

Lecture Notes in Bioinformatics 3370
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Akihiko Konagaya Kenji Satou (Eds.)

Grid Computing
in Life Science

First International Workshop on Life Science Grid, LSGRID 2004
Kanazawa, Japan, May 31 – June 1, 2004
Revised Selected and Invited Papers

13

Series Editors

Sorin Istrail, Celera Genomics, Applied Biosystems, Rockville, MD, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Akihiko Konagaya
RIKEN Genomic Sciences Center
Bioinformatics Group
E216 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
E-mail: konagaya@gsc.riken.jp

Kenji Satou
School of Knowledge Science
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
E-mail: ken@jaist.ac.jp

Library of Congress Control Number: 2005921642

CR Subject Classification (1998): H.4, D.4, D.2, F.2, J.3

ISSN 0302-9743
ISBN 3-540-25208-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11403326 06/3142 5 4 3 2 1 0

Preface

Researchers in the field of life sciences rely increasingly on information tech-
nology to extract and manage relevant knowledge. The complex computational
and data management needs of life science research make Grid technologies an
attractive support solution. However, many important issues must be addressed
before the Life Science Grid becomes commonplace.

The 1st International Life Science Grid Workshop (LSGRID 2004) was held
in Kanazawa Japan, May 31–June 1, 2004. This workshop focused on life sci-
ence applications of grid systems especially for bionetwork research and systems
biology which require heterogeneous data integration from genome to phenome,
mathematical modeling and simulation from molecular to population levels, and
high-performance computing including parallel processing, special hardware and
grid computing.

Fruitful discussions took place through 18 oral presentations, including a
keynote address and five invited talks, and 16 poster and demonstration pre-
sentations in the fields of grid infrastructure for life sciences, systems biology,
massive data processing, databases and data grids, grid portals and pipelines
for functional annotation, parallel and distributed applications, and life science
grid projects. The workshop emphasized the practical aspects of grid technolo-
gies in terms of improving grid-enabled data/information/knowledge sharing,
high-performance computing, and collaborative projects. There was agreement
among the participants that the advancement of grid technologies for life science
research requires further concerted actions and promotion of grid applications.
We therefore concluded the workshop with the announcement of LSGRID 2005.
More information about the workshop is available at: http://www.lsgrid.org/

This post proceedings contains the revised versions of the accepted papers of
the LSGRID 2004 workshop. Ten regular papers were selected for inclusion in
the postproceedings. The papers address the following issues:

– An Integrated System for Distributed Bioinformatics Environment on Grids
– Distributed Cell Biology Simulations with E-Cell System
– The Architectural Design of High-Throughput BLAST Services on OBIGrid
– Heterogeneous Database Federation Using Grid Technology for Drug Dis-

covery Process
– Grid Portal Interface for Interactive Use and Monitoring of High-Throughput

Proteome Annotation
– Grid Workflow Software for a High-Throughput Proteome Annotation

Pipeline
– Genome-Wide Functional Annotation Environment for Thermus thermo-

philus
– Parallel Artificial Intelligence Hybrid Framework for Protein Classification

VI Preface

– Parallelization of Phylogenetic Tree Inference Using Grid Technologies
– Building a Biodiversity GRID

In addition to the regular papers, the postproceedings includes an invited
keynote address by Hideaki Sugawara on:

– Gene Trek in Procaryote Space Powered by a Grid Enviornment

and the following four papers presented in invited talks and posters in
LSGRID 2004 (these papers were reviewed by the editors of the postproceedings)

– EMASGRID: an NBBnet Grid Initiative for a Bioinformatics and Compu-
tational Biology Services Infrastructure in Malaysia

– Development of a Grid Infrastructure for Functional Genomics
– Mega Process Genetic Algorithm Using Grid MP
– “Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks

Using the Improved GOGA Framework and Its Performance Evaluation on
OBI Grid

We would like to acknowledge all the Program Committee members and all
the additional referees for their work on reviewing the submitted papers. We also
wish to thank all the authors and participants of the workshop for contributing
to lively dicussions and the exchange of knowledge and experiences on the Life
Science Grid. It should also be mentioned that the workshop was independent
but closely related to the Life Science Grid Research Group (LSG-RG) of the
Global Grid Forum. More than half of the Program Committee members are also
active members of the Life Science Grid Research Group. It would be difficult
to organize such an international workshop without the continuous efforts of
the LSG-RG. Finally, we wish to thank Fumikazu Konishi, Sonoko Endo, Maki
Otani, Kyoko Hirukawa, Yuko Watada, Aki Hasegawa and Shigerv Takasaki for
their help in organizing this workshop and editing the proceedings.

October 2004 Akihiko Konagaya
Kenji Satou

Organization

LSGRID 2004 was organized by the Special Interest Group on Molecular Bioin-
formatics (SIGMBI) of the Japanese Society for Artificial Intelligence, the Open
Bioinformatics Grid (OBIGrid) Project, and the Japan BioGrid Project.

Executive Committee

Program Chair: Akihiko Konagaya (RIKEN GSC, Japan)
Organizing Chair: Kenji Satou (JAIST, Japan)
Exhibition: Rei Akimoto (Sun Microsystems, Inc., Japan)

Program Committee

Akiyama, Yutaka (AIST CBRC, Japan)
Ang, Larry (BII, Singapore)
Angulo, David (DePaul Univ., USA)
Arzberger, Peter (UCSD, USA)
Bala, Piotr N. (Copernicus Univ., Poland)
Goble, Carole (Univ. of Manchester, UK)
Farazdel, Abbas (IBM, USA)
Fukuda, Ken’ichiro (AIST CBRC, Japan)
Himeno, Ryutaro (RIKEN ACCC, Japan)
Hong, Gilnam (POSTECH, South Korea)
Kao, Cheng-Yao (NTU, Taiwan)
Konagaya, Akihiko (RIKEN GSC, Japan)
Konishi, Fumikazu (RIKEN GSC, Japan)
Lin, Fang-Pang (NCHPC, Taiwan)
Luo, Jingchu (CBI, Peking University, China)
Miyazaki, Satoru (NIG, Japan)
Nakamura, Haruki (Osaka Univ., Japan)
Matsuda, Hideo (Osaka Univ., Japan)
Matsuoka, Satoshi (TITECH, Japan)
Mohamed, Rahmah (UKM, Malaysia)
Napis, Suhaimi (UPM, Malaysia)
Ono, Isao (Tokushima Univ., Japan)
Palittapongarnpim, Prasit (BIOTEC, Thailand)
Rodrigo, Allen (Auckland, New Zealand)
Satou, Kenji (JAIST, Japan)
See, Simon (SUN, Singapore)

VIII Organization

Sekiguchi, Satoshi (AIST GTRC, Japan)
Shimojo, Shinji (Osaka Univ., Japan)
Stevens, Rick (ANL, USA)
Tan, Tin Wee (NUS, Singapore)

Sponsoring Institutions

We appreciate financial supports from the following institutes for LSGRID 2004.

– A Grant-in-Aid for Scientific Research on the Priority Area Genome Infor-
matics from the Ministry of Education, Science, Sports and Culture of Japan

– Japanese Society for Artificial Intelligence

– RIKEN Genomic Sciences Center

– The Initiative for Parallel Bioinformatics, Japan

Table of Contents

Life Science Grid

Gene Trek in Procaryote Space Powered by a GRID Environment
Hideaki Sugawara . 1

An Integrated System for Distributed Bioinformatics Environment on
Grids

Kenji Satou, Yasuhiko Nakashima, Shin’ichi Tsuji, Xavier Defago,
Akihiko Konagaya . 8

Distributed Cell Biology Simulations with E-Cell System
Masahiro Sugimoto, Kouichi Takahashi, Tomoya Kitayama,
Daiki Ito, Masaru Tomita . 20

The Architectural Design of High-Throughput BLAST Services on
OBIGrid

Fumikazu Konishi, Akihiko Konagaya . 32

Heterogeneous Database Federation Using Grid Technology for
Drug Discovery Process

Yukako Tohsato, Takahiro Kosaka, Susumu Date, Shinji Shimojo,
Hideo Matsuda . 43

Grid Portal Interface for Interactive Use and Monitoring of
High-Throughput Proteome Annotation

Atif Shahab, Danny Chuon, Toyotaro Suzumua, Wilfred W. Li,
Robert W. Byrnes, Kouji Tanaka, Larry Ang, Satoshi Matsuoka,
Philip E. Bourne, Mark A. Miller, Peter W. Arzberger 53

Grid Workflow Software for a High-Throughput Proteome Annotation
Pipeline

Adam Birnbaum, James Hayes, Wilfred W. Li, Mark A. Miller,
Peter W. Arzberger, Phililp E. Bourne, Henri Casanova 68

Genome-Wide Functional Annotation Environment for
Thermus thermophilus in OBIGrid

Akinobu Fukuzaki, Takeshi Nagashima, Kaori Ide,
Fumikazu Konishi, Mariko Hatakeyama, Shigeyuki Yokoyama,
Seiki Kuramitsu, Akihiko Konagaya . 82

X Table of Contents

Parallel Artificial Intelligence Hybrid Framework for Protein
Classification

Martin Chew Wooi Keat, Rosni Abdullah,
Rosalina Abdul Salam . 92

Parallelization of Phylogenetic Tree Inference Using Grid Technologies
Yo Yamamoto, Hidemoto Nakada, Hidetoshi Shimodaira,
Satoshi Matsuoka . 103

EMASGRID: An NBBnet Grid Initiative for a Bioinformatics and
Computational Biology Services Infrastructure in Malaysia

Mohd Firdaus Raih, Mohd Yunus Sharum,
Raja Murzaferi Raja Moktar, Mohd Noor Mat Isa,
Ng Lip Kian, Nor Muhammad Mahadi,
Rahmah Mohamed . 117

Development of a Grid Infrastructure for Functional Genomics
Richard Sinnott, Micha Bayer, Derek Houghton, David Berry,
Magnus Ferrier . 125

Building a Biodiversity GRID
Andrew C. Jones, Richard J. White, W. Alex Gray, Frank A. Bisby,
Neil Caithness, Nick Pittas, Xuebiao Xu, Tim Sutton,
Nick J. Fiddian, Alastair Culham, Malcolm Scoble,
Paul Williams, Oliver Bromley, Peter Brewer, Chris Yesson,
Shonil Bhagwat . 140

Mega Process Genetic Algorithm Using Grid MP
Yoshiko Hanada, Tomoyuki Hiroyasu, Mitsunori Miki,
Yuko Okamoto . 152

“Gridifying” an Evolutionary Algorithm for Inference of Genetic
Networks Using the Improved GOGA Framework and Its Performance
Evaluation on OBI Grid

Hiroaki Imade, Naoaki Mizuguchi, Isao Ono, Norihiko Ono,
Masahiro Okamoto . 171

Author Index . 187

Gene Trek in Procaryote Space Powered by a
GRID Environment

Hideaki Sugawara

Center for Information Biology and DNA Data Bank of Japan (DDBJ),
National Institute of Genetics (NIG) 1111 Yata,

Mishima, Shizuoka 411-8540, Japan
hsugawar@genes.nig.ac.jp

Abstract. More than 100 microbial genomes have been sequenced since
1995 and thousands of microbial genomes will be sequenced in a decade.
It implies that millions of open reading frames (ORFs) will be predicted
and should be evaluated. Therefore, we need a high throughput system
to evaluate the predicted ORFs and understand functions of genes based
on comparative genomics. We established and applied a protocol for the
prediction and evaluation of ORFs to genome sequences of 124 microbial
that were available from the International Nucleotide Sequence Database
as of June, 2003. We could carry out the evaluation of about 300,000
predicted ORFs based on clustering and horizontal gene transfer analy-
sis thanks to the GRID environment. This paper introduces mainly the
scheme of the GRID environment applied to the comparative genomics.

1 Introduction

Genomes of procaryotes are doubtless small comparing to human genome. How-
ever, prokaryote genes are more diverse than human genes. The Genome Infor-
mation Broker (GIB) [1] is a database of complete microbial genomes in public
domain. It contained genome data of 124 microbes as of May, 2003. The number
of open reading frames (ORFs) averages 3,000, namely, GIB is also a database
of more than 300,000 genes in total. The space composed of procaryotes genes is
vast and we need a space ship to trek there. Genome sequences are fundamental
parts of the ship, an assembly of data mining tools is the engine and GRID com-
puting is the booster. We successfully applied a GRID environment composed of
5 sites in OBIGrid (http://www.obigrid.org/)[2] to the comparative genomics
of microbes registered in GIB.

2 Materials and Methods

The machines were connected by VPN in OBIGrid for our study as shown in
Fig. 1. They were Linux machines in National Institute of Genetics (NIG)
(64CPUs), Japan Advanced Institute of Science and Technology (JAIST) (68-
CPUs), RIKEN Genomic Sciences Center (GSC) (10CPUs), Japan Science and

pp. 1–7, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

2 H. Sugawara

JAIST provides

34nodes/68CPUs

and OBIEnv

VPN

RIKEN Genomic Sciences Center

GSC provides

5nodes/10CPU VPN

JST provides

33nodes/66CPUs

Japan Science and Technology Agency

DDBJ provides

32nodes/64CPUs
VPN

DDBJ, National Institute of

Genetics

Japan Advanced Institute of Science

and Technology (Dr. K. Sato et al)

OBIEnv

VPN

VPN
TMD provides

21nodes/21CPUs

P2P and DNS

server

Tokyo Medical and Dental

University (Dr. T. Endo)

Internet

Fig. 1. The GRID environment used for the analysis of microbial genomes. Linux
machines in the participating nodes were connected by VPN

Technology Agency (JST) (66CPUs), and Tokyo Medical and Dental University
(TMD) (21CPUs). Thus the total number of CPUs is 229. In these machines,
the Globus ToolKit version 2.4 [3] and OBIEnv [2] were installed. To monitor
the status of the OBIEnv machines, a P2P server is set up in NIG. The snapshot
of the monitoring is introduced in Fig. 2 and demonstrates that the work load
was actually distributed to CPUs in the OBIEnv.

Fig. 2. Monitoring of the GRID environment. Small boxes in the table represent each
CPU in nodes that participated in the project. Color codes are explained in the table

Gene Trek in Procaryote Space Powered by a GRID Environment 3

In DDBJ [7], we had identified open reading frames (ORFs) of the microbial
genomes by our own protocol and stored them in a database. The protocol and
details of the identification will be published elsewhere. We analyzed these ORFs
by use of a GRID environment in two ways. In the case of microbial strains, genes
are transferred among species, namely, horizontal gene transfer (HGT) occurs
after species are established during the evolution [4]. Since we have genome
sequences, we will be able to carry out a comprehensive analysis of HTG. In
addition to the HTG analysis, it is another important issue to infer functions of
ORFs from sequence data. The basic method of the inference is clustering ORFs
expecting that ORFs in a same cluster will share the same function.

3 Results and Discussions

3.1 Horizontal Gene Transfer (HTG)

We constructed a gene model for each microbial genome to evaluate if the candi-
date ORFs is intrinsic or introduced by HTG [4]. If a candidate ORF is largely
deviate from the model, the ORF may be from other species. Therefore, we had
to construct 124 models and then compare a number of ORFs in 124 genomes
with all the models. In this way, we are able to identify donor of ORFs of HTG
as well.

We estimated that the computation of the HTG analysis took about 60
months with a CPU of 2GHz. In OBIEnv, the task was divided into 17,689 jobs as

Machine k

Machine i

Machine j

Commands
to compute

Results and

logs

A machine to
control the JOB
submission for
the HTG
analysis Predseqs.c

Simulation.pl

Result Sim_*-*.out

x100

Predseqs.c

Simulation.pl

Result Sim_*-*.out

x100

Predseqs.c

Simulation.pl

Result Sim_*-*.out

x100

Fig. 3. Distribution of the HTG jobs in OBIEnv. The ORF sequences are distributed
among machines and programs of Simulation.pl and Predseqs.c identify candidates of
horizontally transferred genes. The total number of the JOBs was 17,689

4 H. Sugawara

shown in Fig. 3 to be completed in 18 days, although the network and some CPUs
were down from time to time. Therefore, it will be quite feasible to repeat the
analysis of HTG, whenever the data is update and a new genome is determined.

Results of the HTG analysis are stored in a database and a sample view
of the database is introduced in Fig. 4. The top block in the figure displays

Fig. 4. Some results of horizontal transfer of genes (HTG). Results of the HTG analysis
are stored in a database. A view of the database is a matrix of species vs genes in
a species. This figure is a matrix of E. coli K12 (MG1655) genes and species whose
genome sequences are publicly available. Bluish color of the cell in the matrix represents
the probability of horizontal transfer of E. coli genes. The darker the color is, the higher
the probability is. The warm color shows the probability of the donor of the horizontal
transfer genes of the species to E. coli

Gene Trek in Procaryote Space Powered by a GRID Environment 5

ORFs of E. coli. Identifiers of ORFs in our system are written vertically there.
Colors of cells under each ORF tell the probability of horizontally transferred
gene. A blank cell means that the ORF is intrinsic to E. coli. On the other
hand, a dark blue cell notifies that the corresponding ORF is probably trans-
ferred from other species, namely, horizontally transferred from a donor species
of the ORF. The left tree in Fig. 4 displays a phylogenetic tree of microbes
whose genome sequences are publicly available, e.g., from GIB. The donor
species of the ORF notified by the dark blue cell is identifiable in Fig. 4, if
you look down the corresponding column until you find a warm color cell.
The red cell strongly suggests that the ORF of E. coli was transferred from
the species in the same line as the red cell is. Thus the database of HTG pro-
vides information about not only genes horizontally transferred but also donor
species.

3.2 Clustering of ORFs

We clustered 354,606 ORFs in total by SODHO [5] to retrieve information on
functions of proteins from amino acid sequences of ORFs. With a CPU of 2
GHz, it would have taken 50 days to complete the clustering. In OBIEnv, we
separated the all to all comparison of ORFs into 999 jobs to assign a job to a
CPU for a parallel computing. In this way, it took only 17 hours to complete the
computation. We evaluated the quality of the cluster by mapping to the motif
in InterPro [6]. An example of the mapping is available in Table 1. We may

Table 1. A result of analysis of ORFs by use of InterPro. All the ORFs are compared
with the database of InterPro. This table shows InterPro IDs of 6 ORFs that are
member of a cluster found by SODOH

Name of ORFs IPR002528 IPR001064 IPR00678

PFDSM[1850]|Pfur DSM3638:.faa C10 + +
AAVF5[101]|Aaeo VF5:.faa C10 + +
PAORS[366]|Paby ORSAY:.faa C10 + +
PHOT3[1861]|Phor OT3:.faa C10 + +
TTMB4[1686]|Tten MB4T:.faa C10 +
TTMB4[234]|Tten MB4T:.faa C10 +

expect that member ORFs of a cluster share the same motif among them, if
the clustering is biologically meaningful. The six member ORFs share the same
InterPro ID of IPR002528, although some of the ORFs hit to other InterPro IDs
as well. Therefore, the correspondence the cluster in Table 1 is comparatively
well defined. The precise and global evaluation of the clustering by SODHO is
still under way.

6 H. Sugawara

3.3 Need of Computer Resources for Comparative Genomics

We analyzed 124 microbial genomes that had been disclosed by May, 2003. You
will find genomes of 185 microbial strains as of August, 2004, i.e., 4 genomes a
month were recently sequenced on average. We are able to expect that a number
of microbial genomes will be continuously sequenced. Some microbes are closely
related and even multiple strains belong to the same species. Other microbes
are distant in the phylogenetic tree with each other. Therefore, the comparative
genomics will be a powerful tool to understand especially the dynamics of ge-
nomic evolution and gene functions of microbes. Based on this observation, we
are afraid that we need keep expanding the computer resources to compare a
number of objects. Otherwise, we will not be able to complete a set of analysis
before a new genomic sequence is available.

The computation will be left behind a tidal wave of genomic data, if an
expandable and flexible large scale computing facility. The International Se-
quence Database (INSD) exceeded 30 millions entries and 30 giga nucleotides in
the year of 2003 and will keep expanding every year as much as 1.5 times.
Protein sequence database such as InterPro will expand too. In this study,
we did not use a GRID environment to matching every candidate ORFs to
InterPro. We need certainly a GRID environment or a large scale PC clus-
ter to apply the InterPro analysis to 185 microbes as of August 2004 and
afterwards.

The INSD already includes hundreds of genomic sequences of such wide va-
riety of species as viruses, microbes, plants, animals and human. The INSD will
capture thousands of genomes in the near future. Therefore, it is obvious that
GRID environment will be the infrastructure of comparative genomics that tra-
verse all the species to understand the universe of life phenoma.

Acknowledgements

The GRID computer environment in NIG was supported by Life Science System
Division of Fujitsu Limited. This work has been partly supported by BIRD of
Japan Science and Technology Agency (JST) and also partly by the Grant-
in-Aid for Scientific Research on Priority Area “Genome Information Science”,
Ministry of Education, Sports, and Science (MEXT), Japan

References

1. Fumoto, M., Miyazaki, S., Sugawara, H.: Genome Information Broker (GIB): data
retrieval and comparative analysis system for completed microbial genomes and
more. Nucleic Acids Res., 30(1) (2002) 66–68

2. Konagaya, A., Konishi, F., Hatakeyama, M., Satou, K.: The Superstructure toward
Open Bioinformatics Grid. New Generation Computing, 22 (2004) 167–176

3. http://www.globus.org/

Gene Trek in Procaryote Space Powered by a GRID Environment 7

4. Nakamura, Y., Itoh, T., Matsuda, H., Gojobori, T.: Biased biological functions of
horizontally transferred genes in rokaryotic genomes. Nature Genetics, 16 (2004)
760–766

5. Naitou, K., Kawai, M., Kishino, A., Moriyama, E., Ikeo, K., Ina, Y., Ikezaka, M,.
Satou, H., Gojobori, T.: The implementation of parallel processing for molecular
evolutionary analysis using the highly parallel processor (in Japanese). Joint Sym-
posium on Parallel Processing’90, (1990) 329–226

6. http://www.ebi.ac.uk/interpro/
7. DDBJ (http://www.ddbj.nig.ac.jp/), EMBL (http//www.ebi.ac.uk/) and Gen-

Bank (http://www.ncbi.nlm.nih.gov/)

An Integrated System for Distributed
Bioinformatics Environment on Grids

Kenji Satou1,2, Yasuhiko Nakashima3, Shin’ichi Tsuji3,
Xavier Defago4,5, and Akihiko Konagaya6

1 School of Knowledge Science,
Japan Advanced Institute of Science and Technology

ken@jaist.ac.jp
2 BIRD, Japan Science and Technology Agency (JST)

3 NEC Software Hokuriku, Ltd.
y-nakashima@pu.jp.nec.com,

s-tsuji@pj.jp.nec.com
4 School of Information Science,

Japan Advanced Institute of Science and Technology
defago@jaist.ac.jp

5 PRESTO, Japan Science and Technology Agency (JST)
6 Riken Genomic Sciences Center Computer Science

konagaya@gsc.riken.jp

Abstract. In this paper, an integrated system called OBIEnv, which
has been developed on OBIGrid, is described. In addition to automatic
database transfer and deployment, it provides various functionalities for
transparent and fault-tolerant processing of bioinformatics tasks on Grid.
A feasibility study on the analysis of horizontal gene transfer was done
using 119 heterogeneous Linux nodes in 5 different sites, and OBIEnv
proved its applicability to practical problems in bioinformatics.

1 Introduction

Based on the explosive yield of experimental data on biomolecules, a research
area called bioinformatics has grown remarkably in the past decade. This growth
has been caused by several factors, such as, success of genome projects on human
and model organisms, developments of new protocols and equipments for high-
throughput experiments in molecular biology, and rapid growth of the Internet
and WWW. Furthermore, traditional and advanced technologies in computer
science have been applied to accelerate all the aspect of life sciences. Scientists
nowadays are routinely using computers and networks in experiments, search,
analysis, and visualization.

While the amount of experimental data is increasing exponentially, focus
of genome analysis is shifting from identification of facts (e.g. the sequences
and structures of genes and proteins) to conjecture of relationships, like gene
network[1] and interaction pathways[2] in a cell. Since the latter requires combi-
natorial computation, and the search space itself is exponentially extending[3],

pp. 8–19, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

An Integrated System for Distributed Bioinformatics Environment on Grids 9

researchers in bioinformatics are suffering from chronic shortage of computing
power. Therefore, utilization of Grid computing technology is strongly needed
also in this research area.

Starting from metacomputing in late 80’s, the concept of Grid computing has
evolved giving rise to a variety of research projects[4, 5, 6], which can be classified
according to different aspects: Compute Grids, Data Grids, Access Grids, Cam-
pus Grids, etc.[7] Among them, Open Bioinformatics Grid (OBIGrid) project
is one of the comprehensive Grid project in Japan. Aiming at the construc-
tion of a practical infrastructure for bioinformatics, OBIGrid[8, 9] has adopted
a virtual private network (VPN) in order to guarantee transparency and secu-
rity issues, and several research and development projects are running based
on it.

In this paper, an integrated system called OBIEnv, which has been devel-
oped on OBIGrid, is described. Though it adopts the Globus Toolkit as its
basic middleware for remote command execution, it provides various and orig-
inal functionalities for distributed, high-throughput, adaptive, and transparent
computing, as well as database management in bioinformatics.

2 Design Issues

In the earliest stages of OBIEnv project, we assumed the following things as a
basis for the design of our system.

– Nodes are heterogeneous in its hardware and software. While there might be
Linux boxes and clusters, big SMP machines with Unix (e.g. Sun Fire 15k)
can coexist on a Grid.

– Unlike cluster computing, in case of distributed computing with nodes scat-
tered over the Internet, instability caused by node and network failures is
frequent.

– Bandwidth of wide area network is drastically narrower than that of local
area network.

– While there exist many types of computation in bioinformatics, one of the
most frequently executed computation is processing a great number of simi-
lar tasks independent to each other. For example, all-to-all homology search
with a sequence database is a typical one. It requires a job including many
BLAST executions with the same search space (database) and different
query sequences. This type of computation is classified into embarrassingly
parallel processing, and it is well-suitable for Internet-wide distributed
computing.

– Though we assume the above type of computation, it is impossible to esti-
mate how long time is needed to process each task. In general, it depends
on the application, its input, node characteristics (e.g., CPU type, memory
size, I/O speed), and so on.

Next, we specified the requirements to develop an easy-to-use bioinformatics
environment on Grid.

10 K. Satou et al.

Fig. 1. Design overview of OBIEnv

– Deployment and update of common databases and applications is essential.
It should be performed automatically as much as possible. Of course, network
bandwidth and computing power should be used effectively for fast transfer.

– Information about the existence of databases and applications in a com-
putation node has to be reported, gathered, and accessible for transparent
computing. Furthermore, this information should be managed transparently
to the user.

– Database transfer and job processing must be adaptive to the dynamically
changing situation of nodes and networks, including slowdown and failure.

Finally, we designed OBIEnv as shown in Fig. 1. It consists of the following
three components:

– P2P server for gathering node information about what kind of hardware,
software, and database are deployed in each node. Update of the information
is done in bottom-up manner (reporting from nodes to P2P server).

– Job dispatcher for easy and transparent distributed processing. Given a set
of similar tasks, it dispatches them to the nodes with required environment.
While it is running with the specified constraints, it occasionally searches a
set of appropriate nodes by making a query to the P2P server, then adapts to
dynamically changing situation of nodes (e.g. addition and retire of nodes).

An Integrated System for Distributed Bioinformatics Environment on Grids 11

– Standard Software Environment (SSE) to deal with platform heterogeneity.
By assuming that all the nodes have essentially the same set of software
including GNU tools, programming languages, and bioinformatics applica-
tions, a user can safely scatter a set of tasks to heterogeneous Unix/Linux
systems. Besides the above free software, a series of programs is included for
job dispatching, database update, and node information reporting to P2P
server. Wrapper programs for bioinformatics applications are also included
for easy execution in the nodes dispersed over OBIGrid.

Note that in this model, a representative user account is adopted. Globus
Toolkit requires user accounts and home directories in all remote nodes for job
processing. However, we think this requirement is too strict for our purpose. As
shown in Fig. 1, local and site-level authentication is sufficient, and given a rich
SSE, the need for user’s permanent program files on remote machines could be
reduced.

3 Implementation Issues

On the P2P server, a PostgreSQL daemon is running for search and update of
information. Fig. 2 illustrates what kind of information is stored in it.

To avoid too frequent access to the P2P server, most of the hardware, bench-
mark, and OS information are not frequently updated. Database information is
typically updated daily. Information about job dispatching and database trans-
fer by rsync is updated on demand. In order to prevent malicious updates from
inside the OBIGrid, access to the port of PostgreSQL is controlled by using
iptables on the P2P server.

The job dispatcher is implemented in Perl and Java. Given a set of tasks
and constraints, the dispatcher checks user authentication. Then, based on the

Table 1. List of specifiable constraint variables for job execution. In addition, values
and SQL operators for comparison (=, <, >, ˜, LIKE, etc.) are included in a constraint

Constraint variable Meaning

HOST host names
SITE site names
SMP the number of CPUs
MEM memory size
HDD disk size
CPU MODEL model name of CPU
CLOCK CPU clock
INDEX memory index by nbench-byte
IINDEX integer index by nbench-byte
FINDEX float index by nbench-byte
DB database names
DBV database names and versions

12 K. Satou et al.

Fig. 2. Node information stored in the P2P server

constraints, it searches appropriate nodes for job execution. Table 1 and Fig. 3
show specifiable constraints and two examples of task description, respectively.
After the job dispatcher started, it starts to dispatch the tasks to the nodes. The
dispatching policy is simple: based on the number of CPUs in a node, the dis-
patcher attempts to utilize all of them. Since the dispatcher does not care about
the load average of a node, if two or more dispatchers are running in a Grid, an
overload of nodes can be provoked. However, this is not a critical problem, since
relatively few users have massive tasks to be processed. In addition, even with
this simple policy, nearly correct load balancing is feasible if the number of tasks
is sufficiently large. After the execution of a task on a node, computation results
including standard output and standard error are returned to the dispatcher,
which stores the results using SQLite for easy management of massive results

An Integrated System for Distributed Bioinformatics Environment on Grids 13

Fig. 3. Two examples of task description. Each line corresponds to one task except the
line beginning with “--”. obiget and obiblast are programsincluded in SSE. To avoid
such redundant descriptions illustrated in the upper example, directives are allowed
in task description. In case of the lower example, the directive ##0## is instantiated
bySTDIN with TSV format given to the job dispatcher (more generally, directives
0, 1, 2, . . . are instantiated by each tab-separated values in a line of STDIN to the job
dispatcher)

Fig. 4. Easy handling of computation results. To avoid littering massive files containing
computation results, SQLITE was adopted for organized storing of massive results
(right side)

(SQLite is an endian-free and embeddable DBMS without daemon program).
Using a program obiresult included in SSE, a user can easily search, select, and
extract the specified results of task processing (Fig. 4). Other functionalities of
job dispatcher are illustrated in Fig. 5 – 8.

In the framework of OBIEnv, databases are first mirrored and preprocessed
for deployment. Typically, flat text files, containing various information about

14 K. Satou et al.

Fig. 5. Tolerance to various failure. In case of abort of task caused by node or network
failure, the job dispatcher re-dispatches the task to other working node. While running,
a list of defective nodes is maintained for repressing frequent retry to them

Fig. 6. Dynamic hiring of new nodes. While running, the job dispatcher updates a set
of available nodes by periodical polling to P2P server. If it found a new node which
satisfies the constraints in task file, it starts dispatching to the node, too

Fig. 7. Torelance to the dispatcher’s sudden death. Even if the job dispatcher aborted,
a user only needs to restart it in the same way as its first execution.In this figure,
though the same task list is given to the restarted dispatcher, the tasks which have
already completed normally (i.e. task 1 and 2) are automatically skipped and others
(task 3, 4, and 5) are dispatched. So, a user can freely abort and restart it. This function
is practically useful for massive task processing

biomolecules, and FASTA format files, containing only the IDs, names and se-
quences for homology search, are prepared. Then, these files are indexed and
stored by using SQLite again for fast retrieval of an entry and portability across

An Integrated System for Distributed Bioinformatics Environment on Grids 15

Fig. 8. Redundant execution and result comparison. If a user gave the redundant exe-
cution option to the job dispatcher, it tries to dispatch the same task to two different
nodes. A program obiuniq performs simple comparison on a pair of results for each
task, and reports significantly different cases based on statistical evaluation

Fig. 9. Database transfer flow

the different platforms. After that, all the files including index files are listed
in a file, a set of database files including the list file is deployed in a direc-
tory for transfer. The directory name is defined from database name and ver-
sion number in the form of year/month/date. Finally, the deployment of the
new version of a database is notified to P2P server. As in Fig. 9, if there are
other nodes configured to transfer the newest version of the same database,
they will start transfer by invoking the database update program (typically
from cron).

For fast and efficient transfer of databases and software, we adopted rsync
since it can provide stable and compressed transfer of files. Based on rsync, we
implemented the following functions for rapid and adaptive transfer.

– According to the prepared file list of a database and checksum of it, the
updater program transfers them first, then attempts to transfer each files in
parallel.

16 K. Satou et al.

Table 2. List of software in the standard software environment

GNU tools fileutils-4.1, sed-4.0.7, gawk-3.1.1, grep-2.5, gzip-1.2.4, tar-1.13,
diffutils-2.8.1, less-381, textutils-2.1, bash-2.05b, tcsh-6.12.00

Perl perl-5.8.0 with Pg-2.0.2, bioperl-1.2.1, DBI-1.37,
Data-ShowTable-3.3, DBD-SQLite-0.25, DBD-mysql-2.1026

Java j2sdk1.4.2 with mysql-connector-java-3.0.8-stable,
postgresql-7.3.3, javasqlite-20030613

Python Python-2.2.3 with egenix-mx-base-2.0.4, Numeric-23.0,
biopython-1.10

Bioinformatics blast-2.2.6, clustalw1.83, fasta3
DBMS sqlite-2.8.4
Benchmark nbench-byte-2.1, netperf-2.2pl3
Original obiblast, obichk, obidelete, obidispatch, obiget, obiinfo,

obimonitor, obiregist, obiresult, obiupdate, obidispatch.jar
(Java library)

– In addition, it tries to transfer a file even if a remote node has it but has
not finished transferring the whole database. In other words, the transfer is
pipelined.

As to SSE, first we carefully chose a minimum and essential set of software.
Current list of software is shown in Table 2, although it is growing due to requests
of OBIEnv users.

4 Current Status and Practical Application

Fig. 10 shows a summary of nodes with OBIEnv system. You can see at least two
groups of nodes (left and right) are cooperatively working in OBIGrid (OBIEnv
allows two or more different P2P servers in a Grid).

Right group in Fig. 10 was organized for general purpose, while left one for
a project called “Gene Trek in Prokaryote Space” led by Center for Informa-
tion Biology and DDBJ, National Institute of Genetics. In the project, OBIEnv
proved in practice that it was able to successfully process about 15 thousands
of similar tasks for the analysis of horizontal gene transfer within 18 days by
using 119 heterogeneous Linux nodes including dual Pentium III, quad Xeon,
and single Pentium 4 machines. CPU clocks and memory sizes vary from 900
MHz to 2.4 GHz, and from 1 GB to 8 GB, respectively. These machines were
spanning 5 different administrative domains participating in OBIGrid project.
Fig. 11 illustrates a job execution in the project.

Furthermore, it was proved that OBIEnv could adapt to serious failure of
network. Due to the scheduled power cut in a weekend at the center point of VPN
network, DDBJ was isolated from other 4 sites during massive task processing.
Then OBIEnv automatically detected the failure and kept processing the tasks
by using only 16 nodes in DDBJ. After the reestablishment of VPN connection
on Monday, OBIEnv automatically reemployed the machines in other sites (see

An Integrated System for Distributed Bioinformatics Environment on Grids 17

Fig. 10. Summary of nodes managed by different P2P servers

Fig. 11. Job execution by the job dispatcher

18 K. Satou et al.

(A) (B)

Fig. 12. When started, the job dispatcher was using all the nodes in 5 sites (see
(A):white ovals are the nodes which are processing tasks). During the isolation caused
by scheduled power cut, it kept running by using only the nodes in DDBJ (see (B): gray
ovals are idle nodes). After the powercut, the job dispatcher automatically reemployed
the nodes in other 4 sites (see (A))

Fig. 13. Traffics from/to DDBJ and 3 sites out of 4 in a weekend

Fig. 12 and 13). During this failure, we did not need to stop/restart the job
dispatcher by hand.

Detailed result of horizontal gene transfer analysis project is briefly described
in [10], and in a forthcoming paper.

An Integrated System for Distributed Bioinformatics Environment on Grids 19

5 Conclusion and Future Works

In this paper, we described OBIEnv, a transparent and easy-to-use integrated
system for bioinformatics. Its design and implementation is done with careful dis-
cussions and choices based on the mainstream of computations in bioinformatics,
and we believe its practical effectiveness for easy maintenance and job processing
on heterogeneous computers in different sites in a Grid can greatly help scien-
tific research in bioinformatics. OBIEnv has been continuously improved and the
following functionalities are now about to demonstration experiment:

– In addition to Globus Toolkit, rsh and ssh are adopted. So, OBIEnv is now
available not only for Grid computing but also for cluster computing.

– For safe and accurate computing, a user of OBIEnv can specify redundant
computation. The same task is executed on two different nodes, redundant
results are compared, and significant differences in two results for the same
task are reported.

– More intelligent and efficient algorithm for database transfer is adopted for
optimal utilization of the bandwidths of wide and local area networks.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Priority Areas
(C) “Genome Information Science” from the Ministry of Education, Culture,
Sports, Science, and Technology of Japan.

References

1. Imoto, S., Goto, T. and Miyano, S.: Estimation of genetic networks and functional
structures between genes by using Bayesian network and nonparametric regression,
Pacific Symposium on Biocomputing 7:175–186 (2002).

2. Ogata, H., Goto, S., Fujibuchi, W. and Kanehisa, M.: Computation with the KEGG
pathway database. BioSystems 47, 119–128 (1998).

3. Growth of major databases, http://www.genome.ad.jp/dbget/db_growth.gif
4. Foster, I. and Kesselman, C.: The Globus Project: A Status Report, Proc.

IPPS/SPDP ’98 Heterogeneous Computing Workshop, 4–18 (1998).
5. TeraGrid, http://www.teragrid.org
6. Hoppe, H.-C. and Mallmann, D.: EUROGRID — European Testbed for GRID

Applications, GRIDSTART Technical Bulletin, October (2002).
7. Foster, I.: What is the Grid? A Three Point Checklist, GRIDToday, July 20 (2002).
8. Konagaya, A.: OBIGrid: Towards a New Distributed Platform for Bioinformat-

ics, 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), 380–381
(2002).

9. Konagaya, A., Konishi, F., Hatakeyama, M., and Satou, K.: The Superstructure
Toward Open Bioinformatics Grid, Journal of New Generation Computing, Vol.
22, No.2, 167–176 (2004).

10. Sugawara,H.: Gene Trek in Procaryote Space powered by a GRID environment,
Proc. of the First International Workshop on Life Science Grid (LSGRID2004),
1–2 (2004).

Distributed Cell Biology Simulations
with E-Cell System

Masahiro Sugimoto1,2, Kouichi Takahashi1,�, Tomoya Kitayama3,
Daiki Ito3, and Masaru Tomita1

1 Institute for Advanced Biosciences, Keio University,
Tsuruoka, Yamagata 997-0035, Japan

msugi@sfc.keio.ac.jp, shafi@e-cell.org, mt@sfc.keio.ac.jp,
http://www.e-cell.org

2 Bioinformatics Department, Mitsubishi Space Software Co. Ltd.,
Amagasaki, Hyogo, 661-0001, Japan

sugi@cbo.mss.co.jp
3 Laboratory for Bioinformatics,

Keio University Fujisawa, 252-8520, Japan
{tomoyan, s02082di}@sfc.keio.ac.jp

Abstract. Many useful applications of simulation in computational cell
biology, e.g. kinetic parameter estimation, Metabolic Control Analysis
(MCA), and bifurcation analysis, require a large number of repetitive
runs with different input parameters. The heavy requirements imposed
by these analysis methods on computational resources has led to an
increased interest in parallel- and distributed computing technologies.

We have developed a scripting environment that can execute, and
where possible, automatically parallelize those mathematical analysis
sessions transparently on any of (1) single-processor workstations, (2)
Shared-memory Multiprocessor (SMP) servers, (3) workstation clusters,
and (4) computational grid environments. This computational frame-
work, E-Cell SessionManager (ESM), is built upon E-Cell System Ver-
sion 3, a generic software environment for the modeling, simulation, and
analysis of whole-cell scale biological systems.

Here we introduce the ESM architecture and provide results from
benchmark experiments that addressed 2 typical computationally inten-
sive biological problems, (1) a parameter estimation session of a small
hypothetical pathway and (2) simulations of a stochastic E. coli heat-
shock model with different random number seeds to obtain the statistical
characteristics of the stochastic fluctuations.

1 Introduction

Computational biology requires high-performance computing facilities. There
are many parallel biological applications that can be used in PC cluster en-
vironments, e.g. HMMer, FASTA, mpiBLAST, PARACEL BLAST, ClustalW-
MPI[1], Wrapping up BLAST[2], and TREE-PUZZLLE[3]. We have developed

� Corresponding author.

pp. 20–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

Distributed Cell Biology Simulations with E-Cell System 21

an integrated software environment for computational cell biology, the E-Cell
System[4, 5, 6, 7]. It is an object-oriented software suite for modeling the simula-
tion and analysis of large-scale complex systems such as biological cells. E-Cell
has a hierarchical parallel computing scheme in which (1) simulation sessions
can be concurrently executed on remote computation nodes in grid or cluster
environments, and (2) each run of the simulator can be parallelized on a shared-
memory multi-processor computer employing multiple threads. Here we discuss
the scheme for session-level parallelism, or distributed computing. Elsewhere we
explained the other scheme, parallelization of Gillespie’s Stochastic Simulation
Algorithm (SSA) on E-Cell3[8], or simulator-level parallelism. As many simula-
tion applications in computational cell biology require repetitive runs of simu-
lation sessions with different model- and boundary parameters, the distributed
computation scheme is highly useful.

Some middleware to assign jobs to distributed environments is already avail-
able, e.g. the Portable Batch System (PBS, http://www.pbs.org/), Load Shar-
ing Facility (LSF, http://www.platform.com/), and Sun Grid Engine (SGE,
http://wwws.sun.com/software/gridware/) on the cluster level, and the Globus
toolkit[9] on the Grid level. While these low-level infrastructures are extremely
powerful, they are not compatible with each other nor are they readily acces-
sible to the average computational biologists. Some higher-level middleware fo-
cusing on the use of bioinformatics applications has been developed. For ex-
ample, the Discovery Net System[10] is an application for Genome Annotation,
Talisman[11] is a component of the myGrid[12] project that provides a frame-
work to produce web-based applications, OBIGrid[13] accommodates BLAST
tasks in a grid environment, OBIYagns is a grid-based simulation environment
for parameter estimations[14], and Nimrod/G is a job-scheduler system on dy-
namic global resources[15]. Many other projects are ongoing under the BioGrid
project (http://www.biogrid.jp/). A distributed version of E-Cell, E-Cell2D[16],
which has a client-server architecture where the client uses a Web browser, has
been developed. Although this version of E-Cell is useful for classroom applica-
tions, it lacks the scripting feature necessary for the automation of mathematical
analysis sessions.

Here we report the development of a distributed computing module of E-
Cell System Version 3 (E-Cell3), E-Cell Session Manager (ESM), which can
transparently support PC-, SMP-, cluster-, and grid environments. We present
performance evaluations of parallel computations using ESM, (1) a parameter
estimation of a small hypothetical pathway and (2) simulations of a stochastic
E. coli heat-shock model with different random number seeds to obtain the
statistical characteristics of the model.

2 Architecture

2.1 E-Cell3 and ESM

E-Cell3 is comprised of 3 layers: 1). a class library for cell simulation (libecs)
and its C++ API (libemc), 2) a Python language wrapper of libemc, PyEcs

22 M. Sugimoto et al.

Fig. 1. ESM Architecture. The bottom layer includes a class library for cell simulation
(libecs) and its C++ API (libemc). The top layer represents python front-end utilities
such as SessionManager, GUI, and analysis tools.The middle layer (PyEcs, python
interpreter, and pyecell) is the interface connecting the bottom and top layers

and pyecell, and 3) a library of various front-end and utility modules written
in Python (Fig. 1). The pyecell library defines an object class called Session,
which represents a single run of the simulator. ESM, constructed on top of
the pyecell layer, enables the user to easily script procedures of mathematical
analysis methods that instantiate many Session objects.

2.2 ESM Design

The fundamental design of ESM is shown in Fig. 2 as a class diagram. It is
comprised of 3 classes, the SessionManager-, SessionProxy-, and SystemProxy
class. The SessionManager class provides the user with a basic API to create
and run simulation sessions. SessionManager generates and holds a SystemProxy
object; it represents and communicates to the computing environment on which
ESM is running (such as PC, SMP, cluster, or grid). On request, SystemProxy
generates instances of SessionProxy; it corresponds to a process on PC- and SMP
environments or a job on cluster- and grid environments, and holds the status
of the process or job (waiting, running, recoverable error, unrecoverable error,
or finished). The status chart of SessionProxy is shown in Fig. 3.

As depicted in Fig. 2, subclasses of Session and SystemProxy are instanti-
ated and used by the SessionManager class according to the environment. For
example, a pair of LocalSystemProxy and LocalSessionProxy is selected when
the system is running on a single CPU PC or a SMP machine; the system uses
SGESystemProxy and SGESessionProxy when the user request is to parallelize
the computation on an Sun Grid Engine (SGE) parallel-batch system. On an
SMP or a PC computer, they spawn ordinary processes in the local computer
and use system calls to manage the tasks. On cluster and grid environments,
these classes make contact with the system that manages the computing envi-
ronment to submit jobs and obtain the job status.

Distributed Cell Biology Simulations with E-Cell System 23

Fig. 2. ESM Design. The SessionManager class provides an API for user scripting.
SystemProxy is a proxy of the computing environment such as the cluster- or grid
environment. SessionProxy corresponds to a process or a job. LocalSystemProxy and
LocalSessionProxy are used both on SMP- and single-CPU PC environments

Fig. 3. Status chart representation of SessionProxy. (1) A SessionProxy is created when
a job is registered; the initial status is ’waiting’. (2) It changes to ’running’ when the
registered job is dispatched to acomputation node to run, if the run is suspended,
it returns to ’waiting’. (3) When a recoverable error occurs, the status changes to
’recoverable error’, and the system retries the run until it reaches a user-specifiable
limit. If the retry limit is reached, the job goes to ’unrecoverable error’. (4) A job
terminates in either the ’finished’ or ’unrecoverable error’ status, depending on its
exit status. (5) Users can terminate the job by invoking the clear() method of the
SessionProxy

2.3 ESM Processing Scheme

At least 3 types of files are necessary to run ESM; (1) a model file (EML, or
E-Cell model description language file), (2) a session script file (ESS, or E-Cell

24 M. Sugimoto et al.

Fig. 4. Running ESM from command-line: This figure has three example
command-lines that run the ecell3-session-manager command. ’–environment=’and
’–concurrency=’ command-line arguments specify the computing environment and
concurrency, respectively. (1) Local environment (single-CPU PC or SMP). The de-
fault concurrency in this example is 1. This can be changed by explicitly giving the
-concurrency= argument. (2) An SGE run with 30 CPUs. (3) A Globus run. The num-
ber of simultaneous executions of jobs is limited to 100. All runs execute the EMS file
’ems.py’

session script file), and (3) a Session Manager script file (EMS, or E-Cell ses-
sion manager script file). Simple examples of command lines, an EMS, and an
ESS are presented in Fig. 4, Fig. 5, and Fig. 6, respectively. Below we explain
a typical flow of procedures in an EMS. Items (2) to (4) correspond to the bold
comment lines in the script of Fig. 5.

(1) Set System Parameters
At least 2 system parameters, the computing environment and the concurrency,
should be set when running ESM. The computing parameter specifies what type
of facilities the ESM should use to run and control the jobs. The concurrency
parameter specifies the maximum number of CPUs that the system can use si-
multaneously. These parameters are usually given as command-line arguments
to the ’ecell3-session-manager’ command, which runs an EMS indicated by the
user. (Fig. 4)

(2) Register Jobs
The registerEcellSession() method in EMS registers a job. It accepts 3 argu-
ments, (1) the session script (ESS) to be executed, (2) the optional parameters
given to the job, (3) the input files to the script (at least the model file) that
must be available to the ESS upon execution. In the example in Fig. 5, 100
copies of the session script ’runsession.py’ are registered with a model file ’sim-
ple.eml’. An optional parameter to the script, ’VALUE−OF−S’ is also given to
each session in the range 1, 2, ..., 100. The parameter is available to the ESS as
a global variable. When a job is registered to the system, a SessionProxy object
for the job is instantiated with a unique ID.

(3) Run
When the run() method is called, the registered jobs start executing. In this
step, SystemProxy transfers the ESS file and all the other files to the execution
environment (either a directory in the local machine or a remote computation
node). Next, SessionProxy starts execution of the job. When SystemProxy con-
firms that all jobs are either finished or have an unrecoverable error, the run()
method returns. It is also possible to use an asynchronous scheme in which the

Distributed Cell Biology Simulations with E-Cell System 25

Fig. 5. A sample EMS (E-Cell Session Manager Script): This script runs the session
script ’runsession.py’ 100 times with a changing parameter ’VALUE−OF−S’

Fig. 6. A sample E-Cell session script (ESS): This script runs a simulation model for
200 sec and outputs the value of the variable ’Variable:/:S’ of the model after the
simulation. The initial value of the variable is changed to the value ’VALUE−OF−S’
given by the EMS

run() method returns immediately and the user must check the status of the
jobs explicitly.

(4) Examine the Results
After running the simulation sessions, simulation results are obtained and ex-
amined. The example script in Fig. 5 prints the output of the simulations to the
screen; getStdout(aJobID) shows the standard-out of the job specified by a job
ID. If more runs of the simulation are necessary, go to (2).

3 Results

This section demonstrates and evaluates the performance of ESM with 2 types
of simulation experiments in computational cell biology. The first example is an

26 M. Sugimoto et al.

automatic estimation of 4 kinetic parameters in a hypothetical small metabolic
pathway. The second demonstration runs a stochastic model of the E. coli heat-
shock response repeatedly with different random number seeds to obtain statis-
tical features of the trajectory yielded by the model. Both types of numerical
experiments are representative of the numerical experiments most commonly
conducted in computational cell biology research projects.

3.1 Kinetic Parameter Estimation Using Genetic Algorithms (GA)

In computational cell biology, it is often the case that some model parameters,
e.g. rate constants, are unknown while other experimental data, e.g. concen-
trations at steady states and time-courses of concentrations of some molecular
species, are available. We developed a parameter-estimation tool that runs on
ESM. This program implements a variation of GA that is an evolutionary al-
gorithm to search the global minimum of a given multi-variate fitness function
avoiding local minima[17]. A brief overview of the procedures used in this GA
program is as follows: (1) Generate individuals and randomly distribute them
over the search space. (2) Evaluate each individual with a user-defined fitness
function. A square-error function between given and simulation-predicted trajec-
tories is often used as the fitness function. (3) Select a couple of individuals from
the group of individuals according to some probability, and (4) crossover the
individuals. (5) Mutate each individual. (6) Go to (2), unless the fitness of the
best individual meets a user-specified condition. In this study, the master-slave
parallel GA was employed. The individuals are evaluated on parallel computa-
tional resources in procedure (2); other procedures are conducted on the master
node.

We conducted a benchmark experiment using the pathway model shown in
Fig. 7. This tiny model of a hypothetical metabolic pathway contains 5 molec-
ular species and 5 reactions, one of which is a positive feedback reaction. Each
reaction is represented using an irreversible Michaelis-Menten equation. This
requires 2 rate constants, the Michaelis constant KmS, and the catalytic con-
stant Kcf . Four of the 10 parameters are unknown and to be predicted by the
parameter estimation tool.

The results are shown in Table 1 and Fig. 8. We measured the time required
for the relative square-error between the given and the predicted trajectories to
reach the levels of 10%, 7.5%, 5.0%, and 2.5%. We show 10, 20, and 30 CPU
cases for each level of the relative error. An SGE system running on a Linux
cluster was used for all timings.

3.2 Stochastic Simulation of E. coli Heat-Shock Response

Many cellular phenomena require stochastic simulations whose results must be
discussed by means of statistical measures. Therefore it is common for a numer-
ical simulator to run a model repeatedly with different random number seeds.
We conducted numerical experiments to measure the time taken to run an E.
coli heat-shock model[18] on ESM.

Distributed Cell Biology Simulations with E-Cell System 27

Fig. 7. An example model: S1, S2, S3, S4, and S5 are metabolites; E1, E2, E3, E4,
and E5 are enzymes. All reactions are formulated by using Michaelis-Menten equations
that have 2 parameters each, KmS and Kcf . The parameters for enzymes E1 and E5
are unknown and to be predicted

Table 1. Timings from the parameter estimation experiment using the GA. Of 10 rate
constants in the model in Fig. 7, 4 are unknown. Four sets of training time-courses
of concentrations of the 5 molecular species were given. The number of individuals is
100. Each row shows the times in sec required to reach 2.5%, 5.0%, 7.5%, and 10% of
the relative error level between the given and the predicted time-courses. Each row has
from 10 to 60 CPU cases, therefore, the table shows 24 results. A 40-node, 80-CPU
Linux cluster running SGE was used. The CPUs were Pentium 4 Xeon 2.0GHz. Each
node was connected by a 1000BaseT local area network

Relative CPUs(Time s)
Error % 10 20 30 40 50 60

2.5 11499 6022 4412 3354 2541 2089
5.0 1915 997 732 524 467 419
7.5 1273 604 474 373 304 283
10 627 346 250 183 152 147

The results are shown in Table 2. We measured the time required to run 100,
200, and 300 queries of 100-, 200-, and 300-sec simulations on a single CPU PC,
a dual-CPU SMP machine, and a Linux cluster, setting concurrency to 1, 2, 5,
10, 20, and 30. The table, showing a total of 72 cases (3 x 3 x 8), indicates that
timing increases roughly linearly with the number of queries on all the machine
configurations. In the case with the shortest simulation time (100 sec), a 5-CPU
run of the cluster runs as fast as the single-CPU PC; longer simulation times
(500 and 1000 sec) lower the equilibrium point somewhere between 1 and 2-CPU
runs of the cluster.

3.3 Discussions

The results of the numerical experiments presented in the previous section clearly
show the benefits of using distributed computation in computational cell biology.
Only when a small number of CPUs were used did the performance suffer from
the overhead of parallel computing (see Table 2). This unacceptable overhead

28 M. Sugimoto et al.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

 0 10 20 30 40 50 60 70

T
im

e
s

CPUs

2.5%
5.0%
7.5%
10%

1.0E+02

1.0E+03

1.0E+04

1.0E+05

 0 10 20 30 40 50 60 70

T
im

e
s

CPUs

2.5%
5.0%
7.5%
10%

Fig. 8. Performance graph of the GA parameter estimation. Relative error levels of
10%, 7.5%, 5.0%, and 2.5% cases are shown with 10 to 60 CPU runs. The graph
demonstrates that computation time increases steeply as the required relative error
level decreases. See also Table 1

Table 2. Benchmark results of the stochastic heat-shock response model. We ran 100,
200, and 300 queries of simulations for 100-, 500-, and 1000 sec on a PC, a dual SMP,
and 1, 2, 5, 10, 20, and 30 CPUs of a SGE Linux cluster. The CPUs, memory, and
other hardware configurations were identical in all cases. The workstation cluster used
for this experiments was the same as that used in section 3.1

Simulated Environments & CPUs (Time s)
Time #queries PC SMP SGE
(s) 1 2 1 2 5 10 20 30

100 302.8 153.4 1492.7 745.8 301.3 148.7 79.4 66.0
100 200 605.6 307.8 3006.7 1298.6 598.0 305.9 150.0 104.0

300 910.0 461.9 4501.3 2280.0 902.5 452.6 232.4 152.2
100 1117.8 557.0 1530.4 770.2 303.8 165.5 79.6 65.0

500 200 2223.4 1120.4 3011.7 1520.5 631.3 351.1 174.9 135.3
300 3332.4 1677.2 4571.8 2268.1 912.4 475.6 258.2 158.5
100 2106.0 1088.3 2992.1 1496.5 603.5 298.0 157.4 128.9

1000 200 4283.6 2186.5 6030.8 3011.7 1205.2 597.6 289.9 222.3
300 6571.8 3292.1 9039.8 4522.9 1802.1 912.5 463.7 312.6

is attributable to the processing times required for job submission, transfer and
data retrieval, however, these procedures are not necessary in PC- and SMP
environments.

ESM can distribute simulation sessions of E-Cell transparently on virtually
any distributed computation environments. All scripts can be written in Python
language utilizing ESM’s user-friendly API methods. In fact, the design of ESM
is so generic that it can run any ordinary Python scripts (not E-Cell sessions) if
the registerJob()- rather than the registerEcellSession() method is used.

In homogeneous parallel computing environments such as shared-memory ma-
chines and PC clusters, it is relatively easy to schedule jobs to minimize the

Distributed Cell Biology Simulations with E-Cell System 29

total amount of processing time. In fact, even the simplest first-come-first-served
scheduling scheme, which is the current version of ESS implements, works suffi-
ciently well in many cases. However, heterogeneous environments like Globus Grid
require more sophistication in scheduling and synchronization because
remote computation nodes generally vary unpredictably with respect to their run-
ning and response times. Analysis methods that require all jobs to be finished con-
currently, e.g. MCA and bifurcation analysis, may suffer from this fundamental
weakness of the Grid. However, some other applications of cell biology simulation
of an asynchronous nature may be able to overcome this problem. For example,
the statistical computation of the stochastic model demonstrated here does not de-
mand that all dispatched jobs be finished before itwraps up the simulation andpro-
ceeds to the next step of the analysis of the results. The same strategy might apply
to GA parameter estimations if the algorithm is designed to allow evaluation of fit-
ness functions on an incomplete set of individuals in the population. Various kinds
of parallel GAs have already been developed[19, 20]. Island-type GAs[21], in which
each ’island’ has a subset of the whole population and evolves separately with
asynchronous exchanges of individuals, is an example of these types of method.

Various kinds of analysis scripts that run on ESM are now under develop-
ment. These include a program for the GA-based prediction of power-law based
(GMA or S-System) gene-networks[22], a sensitivity analysis toolkit based on
MCA[23], a bifurcation analysis toolkit that is used to estimate the stability
of non-linear models, and Genetic Programming (GP)[24] for prediction of bio-
chemical reactions mechanisms.

3.4 Conclusions

We developed a distributed computing module for E-Cell System, E-Cell Session
Manager, or ESM. This software hides the details of job creation and manage-
ment, and allows the user to write scripts of numerical experiments in Python
language that runs transparently on any local, cluster-, and grid computing en-
vironments. Using this software, we demonstrated the benefits of distributed
computation in computational cell biology research by presenting 2 demonstra-
tions of numerical experiments, (1) parameter estimation using a GA and (2)
stochastic simulation of the E. coli heat-shock response model. All software de-
scribed here is available at http://www.e-cell.org/, as part of E-Cell Simulation
Environment Version 3, which is OpenSource software under GNU general public
license (GPL) version 2.

Acknowledgements

We thank Satya Arjunan and Bin Hu for fruitful discussions. This work was sup-
ported by a grant from the Ministry of Education, Culture, Sports, Science and
Technology, a grant-in-aid from the 21st Century Center of Excellence (COE)
program of Keio University, “Understanding and control of life’s function via
systems biology”. a grant from the New Energy and Industrial Technology De-

30 M. Sugimoto et al.

velopment and Organization (NEDO) of the Ministry of Economy, Trade and
Industry of Japan (Development of a Technological Infrastructure for Industrial
Bioprocess Project), a grant from the Leading Project for Biosimulation, Min-
istry of Education, Culture, Sports, Science and Technology, and a grant from
the Japan Science and Technology Agency (JST).

References

1. Li, K.B.: ClustalW-MPI: ClustalW Analysis using Distributed and Parallel Com-
puting. Bioinformatics 19 (2003) 1585–1586

2. Hokamp, K., Shields, D.C., Wolfe, K.H., Caffrey, D.R.: Wrapping up BLAST and
Other Applications for Use on Unix Clusters. Bioinformatics 19 (2003) 441–442

3. Schmidt, H.A., Strimmer, K., Vingron, M., Haeseler, A.: TREE-PUZZLE: Max-
imum Likelihood Phylogenetic Analysis using Quartets and Parallel Computing.
Bioinformatics 18 (2002) 502–504

4. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi,
F., Saito, K. Tanida, S., Yugi, K., Venter, J.C., Hutchison, C.: E-Cell: Software
Environment for Whole Cell Simulation. Bioinformatics 15 (1999) 72–84

5. Takahashi, K., Yugi, K., Hashimoto, K., Yamada, Y., Pickett, C.F., Tomita, M.:
Computational Challenges in Cell Simulation. IEEE Intelligent Systems 17 (2002)
64–71

6. Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A.,
Miyoshi, F., Naito, Y., Nakayama, Y., Tomita M.: E-Cell 2: Multi-platform E-Cell
Simulation System. Bioinformatics 19 (2003) 1727–1729

7. Takahashi, K., Sakurada, T., Kaizu, K., Kitayama, T., Arjunan, S., Ishida, T.,
Bereczki, G., Ito, D., Sugimoto, M., Komori, T., Seiji, O., Tomita, M.: E-CELL
System Version 3: A Software Platform for Integrative Computational Biology.
Genome Informatics 14 (2003) 294-295

8. Arjunan, S., Takahashi, K., Tomita, M.: Shared-Memory Multiprocessing of Gille-
spie’s Stochastic Simulation Algorithm on E-Cell3. 4th International Conference
on Systems Biology in St.Louis, MO (2003) poster 253

9. Foster, I. and Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit.
Int. J. Supercomput. Appl. 11 (1997) 115–128

10. Rowe, A., Kalaitzopoulos, D., Osmond, M., Ghanem, M., Guo, Y.: The Discovery
Net System for High Throughput Bioinformatics. Bioinformatics 19 (2003) 225–
231

11. Oinn, T.M.: Talisman - Rapid Application Development for The Grid. Bioinfor-
matics 19 (2003) 212–214

12. Steavens, R.D., Robinson, A.J., Goble, C.A.: myGrid: Personalized Bioinformatics
of The Information Grid. Bioinformatics 19 (2003) 302–304

13. Konishi, F., Shiroto, Y., Umetcu, R., Konagaya, A.: Scalable BLAST Service in
OBIGrid Environment. Genome Informatics 14 (2003) 535–536

14. Kimura, S., Kawasaki, T., Hatakeyama, M., Naka, T., Konishi, F., Konagaya,
A.: OBIYagns: A Grid-based Biochemical Simulator with A Parameter Estimator.
Bioinformatics 20 (2004) 1646–1648

15. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An architecture for a Resource
Management and Scheduling System in A Global Computational Grid. In Proceed-
ings of the HPC ASIA’2000, China (2000)

Distributed Cell Biology Simulations with E-Cell System 31

16. Andrew, S., Ishikawa, N., Yamazaki, T., Fujita, A., Kaneko, I., Fukui, Y.,
Ebisuzaki, T.: Ecell2d : Distributed E-Cell2. Genome Informatics 14 (2003) 288–
289

17. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic Mod-
eling of Genetic Networks using Genetic Algorithm and S-system. Bioinformatics
19 (2003) 643–650

18. Hu, B., Tomita, M.: A Stochastic E. coli Heat Shock Model Using E-Cell v3. 4th
International Conference on Systems Biology, in St. Louis, MO (2003)

19. Cantu-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,
Reseaux et Systems Repartis 10 (1997) 141–171

20. Tomassini, M.: Parallel and Distributed Evolutionary Algorithms: A Review. John
Wiley and Sons (1999) 113–133

21. Horii, H., Kunifuji, S., Matsuzawa, T.: Asynchronous Island Parallel GA Using
Multiform Subpopulations. Lecture Notes in Computer Science (1999) 122–129

22. Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University
Press (2000)

23. Athel, C.B.: Fundamentals of Enzyme Kinetics. Portland Press (1995)
24. Koza, J.R: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA: The MIT Press (1992)

The Architectural Design of High-Throughput
BLAST Services on OBIGrid

Fumikazu Konishi and Akihiko Konagaya

Bioinformatics Group,RIKEN Genomic Sciences Center, 1-7-22,
Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan

(fumikazu, konagaya)@gsc.riken.jp

Abstract. OBIGrid provides high-throughput GRIDBLAST services
(OBIGbs) for researchers who need to deal with many BLAST query
sequences at one time by exploiting both distributed processing and par-
allel processing. A new application-oriented grid framework has been
introduced to split a BLAST query into independent sub-queries and
to execute the sub-queries on remote personal computers and PC clus-
ters connected by a virtual private network (VPN) over the Internet.
The framework consists of five functional units: query splitter, job dis-
patcher, task manager, result collector and result formatter. They enable
us to develop a cooperative GRIDBLAST system between a server and
heterogeneous remote worker nodes: which consist of various computer
architectures, different BLAST implementations and different Job sched-
ulers operated by local resource management policy. The OBIGbs can
execute 29,941 PSI-BLAST query sequences in 8.31 hours when using
230 CPUs in total and can return a 1.37 Giga byte result file.

1 Introduction

Any high-throughput ”ome” project (genome, proteome, transcriptome, phe-
nome etc.) requires intensive homology search to known genomic sequences be-
cause genomic information is a basis of the central dogma in molecular biology.
The increase of genomic information requires masses of computational power for
high-throughput homology services to deal with thousands of query sequences
at one time.

To realize high-throughput homology services, GRID computing is one of
the most attractive and promising approaches currently available because we
can create a virtual organization for the tasks which surpass the computational
power owned by single organizations. However, the following issues have been
raised when constructing network-transparent BLAST[1] services on grid:

1. Load balancing of sub-queries
2. Difference in local resource management policies
3. Variations of computer architectures, BLAST implementations, Job sched-

ulers, etc.

pp. 32–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

The Architectural Design of High-Throughput BLAST Services on OBIGrid 33

Load balancing is one of the classical issues in parallel processing: It becomes
more difficult in heterogeneous wide-area networks where large PC-clusters and
conventional personal computers are connected on the Internet. Intelligent and
robust task control mechanism is necessary to handle long network communi-
cation latency and unexpected CPU work overload as well as network troubles
which are rare in local area networks but often happen in wide area networks.

Local resource management policy strongly depends on the design philoso-
phy and objectives of a grid. OBIGrid[2] adopts free local resource management
policy in which every site retains their rights to manage their resources by them-
selves. In this case, a server cannot expect full usage of remote worker nodes for
a specific network service.

Variations of computer architectures make resource management more com-
plicated. This is one of the typical differences between grids and PC-clusters.
In the case of a PC-cluster, one can assume the same computer architecture,
the same CPU performance, the same network performance, the same software
version, etc. A grid requires an intelligent resource management system to deal
with heterogeneous computing resources.

The OBIGrid BLAST services (OBIGbs) have solved the above issues by
providing a grid framework and building a cooperative GRIDBLAST system
between a server and heterogeneous remote worker nodes. The grid framework
consists of five functional units: query splitter, job dispatcher, task manager,
result collector and result formatter.

– The query splitter unit splits an input query into sub-queries in proportion
to the power of the remote worker nodes for balancing sub-query processing
time.

– The job dispatcher unit dispatches the sub-queries to the BLAST systems
on worker nodes through gate keepers and job managers.

– The task manager unit monitors the execution of BLAST systems by sending
“alive messages” to the worker nodes.

– The result collector unit gathers BLAST results from the worker nodes.
– The result formatter unit reforms results into a format specified by users

when all the sub-queries have been processed.

This paper describes the design of the GRIDBLAST system and show its
effectiveness by three performance measurements from the viewpoints of scal-
ability in execution time and throughput performance. First, we describe the
details of the GRIDBLAST architecture in section 2 and its implementation in
section 3. Then, in section 4, we discuss the results of the GRIDBLAST per-
formance measurements: (1) improvement in execution time when adding the
number of CPUs for a fixed query size, (2) throughput performance when in-
creasing the number of query sequences on a local area network, and (3) total
throughput performance of a practical application on a wide area network over
the Internet. Finally section 5 gives our conclusion of this paper.

34 F. Konishi and A. Konagaya

2 GRIDBLAST Architecture

Design of BLAST services strongly depend on the purpose of services, target
users, available resources, local service policies, etc. OBIGbs provides high-
throughput GRIDBLAST services for researchers on the OBIGrid where various
kinds of computers resources are connected on the Internet and are controlled
under local management policy on each site. There are three major approaches
in developing high-throughput GRIDBLAST services over the Internet.

1. Master-slave model (centralized control, centralized data)
2. Peer to Peer model (distributed control, distributed data)
3. Cooperative model (centralized control, distributed data)

A master-slave model consists of a centralized server with a database and
stateless remote worker nodes. When a server receives a query, the server splits
the query into independent sub-queries and sends a set of a sub-query and a
database to a worker node at runtime. Task and database management is simple
but handling of database deployment becomes one of the performance bottle-
necks in this approach.

A peer to peer model is another way to realize the services. All nodes have
a copy or some portion of a database. Any node in this model can split a query
into sub-queries and asks other nodes to execute the sub-queries. A database
is stored in each node in advance. The database can be deployed on demand
but a complicated database management mechanism is required to keep data
consistency. Task management becomes simpler if a resource manager is provided
as a hybrid peer-to-peer model.

A cooperative model is a mixture of a master-slave model and a peer-to-peer
model. It consists of a centralized server and worker nodes which have a copy
of the same database. Task control is simple and a database can be deployed in
advance or on demand as with a peer to peer model.

OBIGbs adopts a cooperative model for the following reasons. First, we need
to avoid runtime overhead of database deployment to make use of the Internet.
High-performance network and database caching technology may reduce the
overhead. However, runtime deployment of DNA sequence databases would be a
good challenge for data grid technologies if considered that the databases become
double in every year.

Second, a cooperative model can make use of parallel BLAST systems running
on PC-clusters. The parallel BLAST system remarkably reduces BLAST search
time by exploiting data parallelism, that is, database search in parallel. The
system fits to a cooperative model but needs some elaborated works for handling
data parallelism in a master slave model and a peer to peer model.

Third, a cooperative model is flexible enough to make use of various grid mid-
dleware such as job schedulers and data management tools. In OBIGbs, we have
integrated different computer architectures, different BLAST implementations
and different schedulers located at RIKEN GSC, Tokyo Institute of Technology
and NEC Corporation to prove the feasibility of our approach.

The Architectural Design of High-Throughput BLAST Services on OBIGrid 35

Open Bioinformatics Environment[3] (OBIEnv) adopted a hybrid peer-to-
peer model as a basis in this issue. This is because OBIEnv aims to develop a
distributed bioinformatics environment among many sites rather than provid-
ing a bio application portal like OBIGbs. Although OBIEnv and OBIGbs have
adopted different distributed processing models in terms of BLAST services, each
approach has its own strength: node scalability in OBIEnv and large database
handling in OBIGbs. These two approaches will be integrated in the near future
by providing web service interface on OBIGbs.

3 Implementation

GRIDBLAST has been developed on a framework which consists of five func-
tional units executed in sequentially (Fig. 1); query splitter (QS), job dispatcher
(JD), task manager (TM), result collector (RC) and a result formatter (RF).

3.1 Query Splitter (QS)

The QS unit splits an input query into independent sub-queries in proportion to
the ability of the remote computer systems for balancing sub-query processing
time as equally as possible. Sub-query sizes are determined by capacity score
which represents relative appraisal of remote computer systems in terms of net-
work performance and available computing power. The capacity score is esti-
mated by the throughput performance measured from the execution of bench-
mark programs on all resources. A calibration table is also provided to adjust the
capacity score for input sequences, search programs and search parameters. All
parameters in GRIDBLAST are tuned for large-scale homology search against
large-scale databases effectively.

3.2 Job Dispatcher (JD)

The JD unit dispatches sub-queries to the remote BLAST systems through JAVA
CoG Kit[4], gate keepers and job managers in Globus Tool Kit5). Firstly, the JD
unit checks the availability of remote sites for an input query to the gatekeepers
on the worker nodes. The gatekeepers return the number of processors available
by checking a Globus account of an input query for authentication and resource
allocation. Site administrators have rights to determine resource allocation rules
according to their own resource management policies. The JD unit has a master
configuration file for a virtual site which consists of machine configuration, ap-
plications, databases, a gatekeeper and a capacity score. The master file plays
an essential role in mapping a virtual site to a physical site. This mechanism
enables a site administrator to provide different virtual site configurations for
GRIDBLAST on the same hardware: four 16-node virtual PC clusters or two
32-node virtual PC clusters on one 64-node physical PC cluster.

36 F. Konishi and A. Konagaya

3.3 Task Manager (TM)

The TM unit monitors the execution of remote BLAST systems by sending “alive
messages” to worker nodes. The TM unit grasps remote job status by Globus
Resource Allocation Manager (GRAM) provided by the Globus Toolkit[5]. The
TM unit monitors remote BLAST execution status in five stages; INITIALIZE,
PENDING, ACTIVE, FAILED and DONE. INITIALIZE indicates that a remote
BLAST system is in the preparation stage. PENDING indicates that a remote
worker has accepted a query but not yet started a BLAST search. ACTIVE
indicates a remote worker is executing a BLAST search. The status becomes
FAILED if a search fails due to some reason. It becomes DONE when a search
has been completed successfully. GRIDBLAST have fault tolerance facilities to
detect the failure of a sub-query execution on a remote worker and retry the
sub-query on another worker node.

3.4 Result Collector (RC)

The RC unit gathers BLAST results from remote worker nodes when all sub-
queries have been processed. The results are asynchronously transferred from
the remote nodes by globus-url-copy.

3.5 Result Formatter (RF)

The RF unit reforms BLAST results into a format specified by a user. It is
guaranteed to return a BLAST result in the format of a conventional sequential
BLAST returns.

The above five functional units enable us to built GRIDBLAST services
(OBIGbs) for large scale BLAST queries on distributed computers connected
by a VPN on the Internet. OBIGbs also prepares a web interface as a front end
of BLAST search. A user can receive a URL of BLAST search result by e-mail.
The system architecture is so flexible that it can make use of various kinds of
computer architectures, BLAST implementations and job schedulers.

4 Performance Evaluation

We evaluated the performance of GRIDBLAST from the viewpoints of scala-
bility in execution time and throughput performance. Scalability tests measure
increased speed ratio in proportion to the number of worker sites in order to
evaluate the effectiveness of a load balancing algorithm and to estimate max-
imum performance of our system. Early evaluation results were obtained from
twelve uniform virtual worker sites constructed on two large PC clusters on a
local area network. As for the throughput performance, we measured the num-
ber of query sequences processed per hour when changing the number of queries
sent to virtual worker sites on a local area network, and the one when sent to
real worker sites on a wide area network over the Internet.

The Architectural Design of High-Throughput BLAST Services on OBIGrid 37

G
rid

B
la

st
F

ra
m

ew
or

k

T
IT

ec
h

S
ite

N
E

C
 S

ite

G
S

C
 S

ite

Q
ue

ry
 s

pl
itt

er (Q
S

)

Jo
b

di
sp

at
ch

er (J
D

)

T
as

k
m

an
ag

er

(T
M

)

R
es

ul
t

co
lle

ct
or

(R
T

)

R
es

ul
t

fo
rm

at
te

r

(R
F

)

G
at

ek
ee

pe
r

G
at

ek
ee

pe
r

G
at

ek
ee

pe
r

G
at

ek
ee

pe
r

G
at

ek
ee

pe
r

B
la

st
 R

es
ul

t

S
co

re
/P

B
S P
B

S

S
co

re
/P

B
S

C
on

do
r

S
co

re
/P

B
S

Jo
b

M
an

ag
er

64
 n

od
es

12
8

C
P

U

P
C

-
C

lu
st

er

32
 n

od
es

64
 C

P
U

P
C

-
C

lu
st

er

20
 n

od
es

20
 C

P
U

P
C

-
fa

rm

6
no

de
s

12
 C

P
U

P
C

-
C

lu
st

er

6
no

de
s

6
C

P
U

P
C

-
fa

rm

A
liv

e
M

es
sa

ge
s

T
IT

ec
h

S
ite

N
E

C
 S

ite

G
S

C
 S

ite

Q
ue

ry
 s

pl
itt

er

(Q
S

)

Jo
b

di
sp

at
ch

er

(J
D

)

T
as

k
m

an
ag

er

(T
M

)

R
es

ul
t

co
lle

ct
or

(R
T

)

R
es

ul
t

fo
rm

at
te

r

(R
F

)

O
u

tp
u

t

G
a

te
k
e
e
p

e
r

S
u

b
 Q

u
e
ri

e
s

B
la

s
t

R
e
s
u

lt

S
co

re
/P

B
S

P
B

S

S
co

re
/P

B
S

C
on

do
r

S
co

re
/P

B
S

Jo
b

M
an

ag
er

64
 n

od
es

12
8

C
P

U

32
 n

od
es

64
 C

P
U

20
 n

od
es

20
 C

P
U

6
no

de
s

12
 C

P
U

P
C

 -
C

lu
st

er

6
no

de
s

6
C

P
U

P
C

 -
fa

rm

A
li
v
e
 M

e
s
s
a
g

e
s

G
a

te
k
e
e
p

e
r

G
a

te
k
e
e
p

e
r

G
a

te
k
e
e
p

e
r

In
pu

t

P
C

 -
fa

rm

P
C

 -
C

lu
st

er

P
C

 -
C

lu
st

er

G
a

te
k
e
e
p

e
r

Fig. 1. Diagram of GRIDBLAST Framework

4.1 Overhead Measurement

To measure the overhead of the OBIGbs framework, we developed a real time
monitor to check job status accumulation on each site (Fig. 2). A job status ac-

38 F. Konishi and A. Konagaya

Fig. 2. Screen image of progress monitor for BLAST execution on each site

cumulation is represented by a bar painted in five colors corresponding to time
stages obtained from GRAM: preparation, pending, running job, waiting com-
plete and clean up. According to our early measurement, Grid execution over-
head decreased when executing a large-scale homology search. However, result
data transfer became a bottleneck and severe overhead was found in gsiftp. Re-
search in multi-site data transfer still has untouched technical issues to explore.

4.2 Scalability in Execution Time

To evaluate the scalability of GRIDBLAST in execution time, we constructed
a test bed which consists of twelve virtual worker sites on two PC clusters: 32
nodes and 64 nodes Linux PC-clusters with dual PentiumIII 933MHz CPUs,
1G Bytes main memory and one SCSI 36G disk on each node. The nodes are
all connected by Gigabit Ethernet switches. We have developed twelve virtual
worker sites, each of which provides a parallel BLAST system with 16 CPUs.

Table 1 shows the BLAST parameters used in this experiment. The target
database is all non-redundant protein sequences (nr) constructed from GenBank
CDS translation, protein structure database (PDS), protein database (Swis-
sProt), protein identification resources (PIR) and Protein Research Foundation
database (PRF). The nr database had 1,794,787 entries and 592,464,797 residues
when this measurement was done. Gapped Blast search was applied for an in-
put query sequence with 278 residues, retrieved from Mycoplasma pneumoniae
peptide sequence (AAB96231).

The Architectural Design of High-Throughput BLAST Services on OBIGrid 39

Table 1. GRIDBLAST Parameters for Scalability Measurement

App blastpgp
DB nr (All non-redundant GenBank CDS translations + PDB + SwissProt

+ PIR + PRF)
Options -v 500 -b 500 -j 3 -T F -e 10 -F L
Query AAB96231 Mycoplasma pneumoniae peptide sequence (278 residues)

Fig. 3. Scalability Measurement on Twelve Virtual Worker Sites

Fig. 3 shows the speedup ratio when increasing the number of virtual sites
while using the same database and the same input sequence. It took 4.48 hours
for one virtual site (16CPUs) and 0.65 hours for twelve virtual sites (192 CPUs)
to search the database. Speed up ratio in execution time is about 6.9 for 12 fold
of CPUs. Communication latency was negligible in this measurement but some
constant overhead caused by Globus Tool Kit were observed. Other reasons that
prevent GRIDBLAST scalability are still under investigation.

4.3 Throughput Performance on Local Area Network

The purpose of OBIGbs is to provide high throughput GRIDBLAST services
for multi users. In this case, it is important to find optimal job granularity
that can fully make use of a GRIDBLAST system. Otherwise, over problem-
decomposition may cause a waste of resources or may reduce the throughput
performance. In order to measure the GRIDBLAST throughput performance,

40 F. Konishi and A. Konagaya

Fig. 4. Throughput Performance on Local Area Network

we have developed two test beds: a small GRIDBLAST system with 34 CPUs
(SGS) and a large GRIDBLAST system with 224 CPUs (LGS). SGS consists of
34 Celeron 1.3GHz single CPU with 1Giga Bytes main memory and one 36G
Byte IDE disk. LGS consists of SGS and two PC Clusters used for scalability
measurement.

Fig. 4 shows the difference of throughput performance between SGS and
LGS when changing the number of query sequences. We used the same BLAST
parameters in Table 1 and made an input query by duplicating the same sequence
to equalize the BLAST search time per sequence. Fig. 4 shows that throughput
performance ratio between SGS and LGS is 1.91 for 500 sequences and 3.42 for
3000 sequences. Although it is too early to derive a concrete statement from this
measurement, the result indicates that LGS cannot make use their full capacity
when the number of input query sequences is less than 3000. The ratio will be
worse when PC-clusters are distributed in a wide area network. It should be also
noted that a result file becomes 3.78 Giga Bytes for a query with 3000 sequences.
Multistage data transfer is mandatory to deal with BLAST results.

4.4 Throughput Performance on Wide Area Network

The GRIDBLAST throughput performance strongly depends on communication
overhead in wide area networks. In addition, robustness and flexibility are also
required to dealing with various computer resources on the remote sites. The cur-
rent OBIGRID BLAST services (OBIGbs) consist of three GRIDBLAST sites
located in RIKEN Genomic Sciences Center (GSC), Tokyo Institute of Tech-
nology (TITech) and NEC Corporation (NEC) connected by a VPN over the
Internet. The uniqueness of OBIGbs is in its heterogeneous configuration in
computer architectures, BLAST implementations and job schedulers. The GSC

The Architectural Design of High-Throughput BLAST Services on OBIGrid 41

Table 2. GRIDBLAST Parameters for Throughput Measurement on Wide Area Net-
work

App blastpgp
DB nr (All non-redundant GenBank CDS translations + PDB + SwissProt

+ PIR + PRF)
Options -v 10 -b 10 -j 3 -T F -e 0.0001 -F L
Query FANTOM 2.1 predicted amino-acid sequences[8] (12 Mega Bytes)

GRIDBLAST site consists of twelve MPI-based parallel BLAST systems running
on 64CPUs and 128CPUs PC-clusters scheduled by SCORE/PBS[6] and twenty
NCBI BLAST systems running on twenty single-CPU personal computers sched-
uled by PBS. The TITech GRIDBLAST site consists of six NCBI BLAST sys-
tems running on six single-CPU personal computers scheduled by CONDOR[7].
The NEC GIRDBLAST site consists of twelve NCBI BLAST systems running
on a 12-cpu PC cluster scheduled by SCORE/PBS.

The OBIGRID BLAST services (OBIGbs) can execute 29,941 BLAST query
sequences in 8.31 hours when using 230 CPUs in total and can return 1.37 Giga
Bytes BLAST results for the BLAST parameters in table 2.

5 Conclusion

We have designed and developed a prototype of a high throughput GRIDBLAST
services (OBIGbs) on Open Bioinformatics Grid (OBIGRID). The GRIDBLAST
system gives network transparent BLAST services by encapsulating architectural
differences while pursuing maximum performance of local computer resources
by tuning BLAST implementations and job schedulers suitable to computer ar-
chitectures on each site. Performance measurements have been made from the
viewpoints of scalability in execution time and throughput performance using
virtual remote sites on a local area network and the real remote sites on the
Internet. The performance measurements show the effectiveness of the GRID-
BLAST architecture in scalability with respect to the number of remote sites
and the limitation of query decomposition when a query size is small. More per-
formance measurements and evaluation are necessary to derive concrete results
useful for parallel processing and distributed processing. In order to show the
feasibility of the GRIDBLAST architecture, we have developed a GRIDBLAST
system on OBIGRID. The GRIDBLAST services are now available at our web
portal site (http://www.obigrid.org/). It can execute 29,941 BLAST query se-
quences in 8.31 hours and can return 1.37 Giga Bytes BLAST results when using
230 CPUs in total on the Internet.

Acknowledgements

We gratefully acknowledge the members of OBIGrid project for valuable discus-
sion and grid operation, and Shiroto Yukimasa and Yoshitomi Yuuki in NEC In-

42 F. Konishi and A. Konagaya

formatech Systems, Ltd. for their contribution to the development of the GRID-
BLAST systems.

References

1. Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang,
Zheng Zhang, Webb Miller, and David J. Lipman : Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs, Nucleic Acids Res.
vol. 25, pp.3389–3402 (1997).

2. Akihiko Konagaya, Fumikazu Konishi, Mariko Hatakeyama: The Superstructure
Toward Open Bioinformatics Grid, New Generation Computiong, vol.22, no.2, (in
printing) (2004).

3. Kenji Satou, Yasuhiko Nakashima, Shin’ichi Tsuji, Xavier Defago, Akihiko Kona-
gaya: An Integrated System for Distributed Bioinformatics Environment on Grids,
in Proc. of Int. workshop on Life Science Grid (LSGRID2004) (2004).

4. Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane : A Java Commodity
Grid Kit, Concurrency and Computation: Practice and Experience, Volume 13, Issue
8-9, pp. 643–662 (2001).

5. I. Foster, C. Kesselman, J. Nick, S. Tuecke: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration., Open Grid Service
Infrastructure WG, Global Grid Forum, June 22 (2002).

6. Yutaka Ishikawa, Hiroshi Tezuka, Atsuhi Hori, Shinji Sumimoto, Toshiyuki Taka-
hashi, Francis O’Carroll, and Hiroshi Harada : RWC PC Cluster II and SCore
Cluster System Software — High Performance Linux Cluster. In Proceedings of the
5th Annual Linux Expo, pp.55–62 (1999).

7. Jim Basney and Miron Livny: Deploying a High Throughput Computing Cluster,
High Performance Cluster Computing, Rajkumar Buyya, Editor, Vol. 1, Chapter 5,
Prentice Hall PTR, May (1999).

8. The RIKEN Genome Explotion Research Group Phase II Team and the FANTOM
Consortium, Functional annotation of a full-length mouse cDNA collection, Nature,
vol. 409, pp.685–690 (2001).

Heterogeneous Database Federation
Using Grid Technology

for Drug Discovery Process

Yukako Tohsato1, Takahiro Kosaka1, Susumu Date1,
Shinji Shimojo2, and Hideo Matsuda1

1 Graduate School of Information Science and Technology, Osaka University,
1-3 Machikaneyama,Toyonaka, Osaka 560-8531 Japan

{yukako, tak-k, sdate, matsuda}@ist.osaka-u.ac.jp
2 Cybermedia Center, Osaka University,

5-1 Mihogaoka, Ibaraki, Osaka 567-0047 Japan
shimojo@cmc.osaka-u.ac.jp

Abstract. The rapid progress of biotechnology provides an increasing
number of life science databases. These databases have been operated
and managed individually on the Internet. Under such a circumstance,
it is needed to develop an infrastructure that allows to share information
contained in these databases and to conduct research collaboration. Grid
technology is an emerging technology for seamless and loose integration
of diverse resources distributed on the Internet. In order to achieve fed-
eration of the heterogeneous databases, we have developed a system for
supporting a drug discovery process using Globus Toolkit3/OGSA-DAI.
As an essential part of the system, we introduce a protein-compound
interaction search based on a meta-data bridging protein and compound
information with their interaction types; such as, inhibitor, agonist, an-
tagonist, etc. The effectiveness of our system is demonstrated by search-
ing for the candidate compounds interacting with the glucocorticoid re-
ceptor protein.

1 Introduction

Recently, life science research has progressed rapidly. Acquired knowledge is ac-
cumulated in hundreds of bio-related databases. On the other hand, a large
number of sophisticated analytic software tools have been developed. Scientists
expect an integration-understanding of life activity using these life scientific re-
sources. Bio-related databases have an enormous amount of data. Types of the
data have been diverged rapidly, and the databases are distributed on web. User
needs a method of effective utilization for the databases. Thus, database inte-
gration technology has been studied. Physical integration of the databases is not
feasible since the cost to unify data models of the databases is very expensive
due to frequent update of the databases. For this reason, we took an approach
of distributed query based on metadata describing relationships of databases[1].

pp. 43–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

44 Y. Tohsato et al.

We focus on grid technology as one of the most promising technologies. Open
Grid Services Architecture (OGSA[2]) enhances web service technology with ad-
vanced functions such as state management. The utilization of these functions
standardized by Global Grid Forum (GGF)[3] makes it possible to realize effi-
ciently our approach for integrating heterogeneous databases.

In this paper, we introduce a protein-compound interaction search in the
heterogeneous database federation using OGSA in our prototype system. The
effectiveness of the search is demonstrated by applying the method to searching
for drug candidates which relate to the glucocorticoid receptor protein.

2 Approach for Heterogeneous Database Federation

2.1 Metadata-Based Database Federation

Life science researches often require integration of interdisciplinary information
extracted from domain-specific databases. For example, drug discovery process
is composed of many stages: target identification/validation, lead identifica-
tion/optimization and clinical trials. Each stage needs different knowledge and
information from a wide variety of data resources, such as medical, gene, pro-
tein and compound databases. It is, however, very difficult to interoperate these
databases due to large semantic gaps among their background knowledge (med-
ical science, molecular biology and pharmaceutics). To cope with this issue, we
have introduced two types of metadata, application metadata (AP-Metadata)
and data service metadata (DS-Metadata), for bridging the information among
databases. AP-Metadata plays a role to fill the gaps between applications (e.g.,
drug discovery) and databases, whereas DS-Metadata provides a unified view
of the databases that are expressed in different formats but are based on the
same background.

Fig. 1 shows the relationship between AP-Metadata and DS-Metadata for
an example of protein-compound interaction search services. AP-Metadata de-
scribes relationships between proteins and compounds. When databases include
the same type of data such as protein-related databases, DS-Metadata links
these databases such as SWISS-PROT[4], PIR[5] and PDB[6]. Here, we design
a standard data format to resolve their heterogeneity. We assign a unique iden-
tifier (id) to each entry in these databases using the standard data format. AP-
Metadata and DS-Metadata keep reference pointers to the original databases.
The reference pointers include their database names and their database IDs for
database entries.

2.2 Open Grid Services Architecture

We use the grid technology as one of the most promising technologies that en-
able us to efficiently integrate heterogeneous resources for life science. Recently
GGF has proposed OGSA. OGSA has prescribed uniform grid service interfaces
as an extension of traditional web services with new functions such as state
management and life cycle management. Every service is expected to have an

Heterogeneous Database Federation Using Grid Technology 45

Fig. 1. Outline of our prototype system

interface that is described with XML, exchange messages in an XML format via
Internet-based protocol (e.g., SOAP).

As a tool which is constructed by OGSA, OGSA-DAI (Open Grid Service
Architecture Data Access and Integration)[7] has been developed in the e-Science
project[8]. OGSA-DAI is a set of grid services that enables us to make various
data resources accessible as grid services. It will support DB2, Oracle, MySQL
and XIndice. By using OGSA-DAI, the database will be integrated virtually
using web mechanisms such as SOAP to enable database services to operate
within the XML scheme. The architecture was proposed in detail in our previous
papers[1][9]. In our system, the grid services are integrated by using Globus
Toolkit 3 with OGSA-DAI (see Fig. 1).

3 An Application Example for Drug Discovery

3.1 Protein-Compound Interaction Search

Our prototype system has been built with a focus on an actual use case in drug
discovery. Drug discovery is a process for finding chemical compounds (drugs)
that have effects on their target proteins. The candidate compounds must be
refined and tested carefully for their safety and efficacy, usually resulting in its
discard (only 1 in 5,000 compounds tested reaches the market). In this step,
first, users must select a known protein involved in a disease. Next, users have to
search for candidate compounds that can alter the action of the target protein.
If we can use the known data for systematically searching for the compound, we
minimize the cost of drug development.

Schuffenhauer and coworkers introduced a compound-protein interaction data-
base[10]. The database covers compounds with hierarchical levels of protein clas-
sification which is based on pharmacological activity. The classification used for
a protein-compound interaction search (see Fig. 2)[11]. An advantage of the

46 Y. Tohsato et al.

Fig. 2. Work flow of protein-compound interaction search

method is that it is able to find the candidate compounds for target protein that
has unknown biological function. The searching process is as follows.

1. Search for homologous proteins of a target protein from protein databases
using a specialized tool such as NCBI-BLAST[12].

2. Retrieve compounds bound to the homologous proteins from compound
databases and interaction databases.

3. Search for drug candidates from the retrieved compounds based on structural
similarity.

Fig. 3 shows an example of the correlation between the sequence similarity
of proteins and the structural similarity of compounds bound to the proteins.
Rosiglitazone is a compound bound to the peroxisome proliferator-activated re-

Fig. 3. An example of the protein-compound relationship with protein-protein and
compound-compound similarity

Heterogeneous Database Federation Using Grid Technology 47

ceptor gamma (PPAR-gamma) protein. Fenofibrate is a compound bound to
the peroxisome proliferator-activated receptor alpha (PPAR-alpha) protein. The
PPAR-gamma protein and the PPAR-alpha protein belong to the same family,
and each sequence has high sequence similarity. The structures of their com-
pounds are similar to each other. We introduce the protein-compound interaction
search to heterogeneous database federation.

3.2 Compound Representation and Similarity Measure

Since structure searches are typical NP problems, they are computationally
costly[13]. Thus in order to enhance the computation performance, pre-defined
substructures are used to search for a compound[14]. Such substructures are
called descriptors. Using pre-defined N descriptors, a structure of a compound
is represented by a bit-string (a sequence of “0” and “1” digits). When a bit is
set to 1 in a bit-string, it means the corresponding substructure is present, and
0 means the substructure is absent. For example, MDL[15] represents the 166
descriptors in the ISIS structure database systems. We used the ISIS public key
(166 descriptors) to express the compound structure.

Many different similarity calculations between two bit-strings have been re-
ported [10] [16]. For example, the Tanimoto coefficient t(x, y) , takes the form

t(x, y) =
γ

α + β − γ
(1)

where α and β are the number of 1 bits (i.e., the number of substructures) in
bit-strings x and y, respectively, and γ is the number of common substructures
in both bit-strings x and y. The Tanimoto coefficient has value 1 representing
that the two compounds have the identical set of substructures, and has value
0 representing that they do not share any substructures. Xue and coworkers
indicated that, a high Tanimoto score of 0.7 or above is representative of two
compounds having high structural similarity which is a good indication of similar
biological activity[17]. Willet and Winterman showed the Tanimoto coefficient
is the best performance compared to the Euclidean distance, cosine and Dice
coefficients for similarity searching in structural databases and is implemented
in most of the publicly available structure similarity searching tools. As similarity
function for a pair of compound structures we used the Tanimoto coefficient in
this study.

For the protein-compound interaction search in Sect. 3.1, the structural sim-
ilarity search in step 3 needs to find compounds similar to a set of query com-
pounds (the retrieved compounds in step 2) instead of a single query compound.
To use a set of compounds as a query for similarity searching, a method to cal-
culate the similarity of a candidate compound to a query set of N compounds
needs to be developed. We use the nearest neighbor method for the search with
a large set of compounds as a query. Hereafter we refer to a reference set as a
set of query compounds, and refer to a candidate set as a set of compounds to
be searched by the method.

48 Y. Tohsato et al.

Let ri be the representation vector of compound i in the reference set R.
Let x be the representation vector of the candidate compound. The similarity
between two compounds x and y is t(x, y). The nearest neighbor method takes
a similarity score Min(x, R), given by Equation(2). Here the similarity between
compound set R and compound x is defined as similarity between x and its
nearest neighbor in R.

Min(x, R) = min {t(x, ri)|ri ∈ R} . (2)

In our prototype system, both reference and candidate sets are included in
the same database. Currently the reference set is selected manually based on user
interest. The candidate set is obtained by removing the reference set from the
database. All compounds in the candidate set were ranked by their similarity.

4 Implementation

We apply the protein-compound interaction search to our prototype system with
the following configuration:

– OS: Redhat Linux 9
– CPU: Pentium4 2.4 GHz
– Memory Size: 4GB
– Java: Java SDK 1.4.1 03 b02
– Globus Toolkit: Globus Toolkit 3.0.2
– OGSA-DAI: Release 2.5
– Container: Jakarta Tomcat 4.1.24
– DBMS: MySQL 3.23.54

We aim for efficient integration by categorization and aggregation of databases
based on their types. In our prototype system, 11 bio-related databases are used,
which are categorized by disease, genome, protein, compound and interaction
as shown in Table 1. The program and data for protein-compound interaction
searching are assigned on one computer. Querying databases for each category
are provided as our grid service.

Table 1. Databases we used in our prototype system

Type Database Size
Disease Medeical Encyclopedia 3079 entries
Genome DDBJ Human 7037852 entries, 10176023644 bases

Mouse 5063486 entries, 6071844270 bases
Protein Swiss-Prot 137885 entries, 50735179 amino acids

PIR 283227 entries, 96134583 amino acids
PDB 23073 entries

Compound MDL Drug Data
Report (MDDR-3D) 142553 entries

Interaction ENZYME, GPCR-DB
NucleaRDB, LGIC-DB

Heterogeneous Database Federation Using Grid Technology 49

4.1 Databases

For the protein-compound interaction search, we use Swiss-Prot Release 39.17
of 27-Apr-2001 for a protein database and MDL Drug Data Report (MDDR)
Release 2003.2 for a compound database. Swiss-Prot includes 137885 proteins.
MDDR includes 142553 compounds. In this paper, proteins are denoted by their
Swiss-Prot accession numbers (e.g., P014050) and compounds are denoted by
their MDDR registry id (e.g., 209035). We bridge proteins and compounds to use
the NucleaRDB relational database for a protein-compound interaction database
which is annotated by protein classification[10]. For a protein similarity search-
ing, we use NCBI-BLAST Version 2.2.6.

Each of these databases are accessible through OGSA-DAI. OGSA-DAI re-
ceives a SQL statement in an XML document from the metadata service and
queries to the underlying database using JDBC. Results of the query are trans-
lated into an XML document and transferred back to the metadata service. The
databases have been stored into a MySQL server.

Many redundant compounds exist in the MDDR database. For example, it
is shown that the compound of MDDR registry ids 209035 and 209040 are the
derivatives of 207704. Thus, we use PREF.NUMBER for identifying derivatives
of compounds. PREF.NUMBER contains the Prous Entry Number of a com-
pound, in a series of derivative compounds, which reportedly exhibits the great-
est biological activity. We select the compound which has the same value in both
the MDDR registry id and PREF.NUMBER fields. This indicated that it has the
greatest biological activity or is the representative compound in the derivative
compounds.

4.2 Search Results

We apply a protein-compound interaction search for the compounds having
activity to the glucocorticoid receptor protein (Swiss-Prot accession number
is P01450). When we search the homologous proteins for P01450 protein in
the Swiss-Prot database, we use NCBI-BLAST. We select P08235, P06401 and
P10275 in order of BLAST E-value which have similarity to the receptor pro-
tein. 163 compounds are retrieved as the compounds having activity to these
proteins from the interaction database. We select 5 compounds (115029, 170262,
315962, 322129 and 329279) from the compounds that interaction types are ag-
onist. When we search for similar structures from the MDDR database on the
condition that the Tanimoto coefficient threshold is 0.9, we get 26 compounds.
The processing time of the query is 7 seconds.

To evaluate processing times by using OGSA-DAI in the prototype system,
we select the top similar proteins for the P01450 protein in order of BLAST E-
value using NCBI-BLAST. Here, BLAST E-value threshold is 6E-39. We search
for the compounds interacting with different numbers of proteins. The result
is shown in Fig. 4(a)(b). Fig. 4(a) shows the average processing time of the
three times of protein-compound interaction search compared to the number

50 Y. Tohsato et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9

T
i
m
e

(
s
e
c
)

Num. of proteins

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500

T
i
m
e
(
s
e
c
)

Num. of compounds

(b)

Fig. 4. Processing time of the protein-compound interaction search using OGSA-DAI

of proteins. Fig. 4(b) shows the average processing time of the three times of
protein-compound interaction search compared to the number of the compounds.
For example, the average processing time of the search for 531 compounds bound
to 9 proteins is 8.5 seconds. In Fig. 4, the processing time increases linearly
relative to the number of compounds.

5 Conclusions and Future Works

We have introduced a protein-compound interaction search in heterogeneous
database federation with Globus Toolkit 3 and OGSA-DAI based on the consid-
eration of the identification process of candidate compounds for a target protein.
The effectiveness of our implementation is demonstrated by applying the method
to the glucocorticoid receptor protein.

In the current implementation, we store the data into the relational database.
We need to introduce an XML native database for expressing hierarchical struc-
ture of the bio-related data. In the drug discovery, users need security for the
system. Thus, for further improvement, we plan to extend our system.

From December 2003, the UniProt database, which is a single, centralized,
authoritative resource for protein sequences and functional information, has
started [18]. The Swiss-Prot, TrEMBL and PIR protein database activities have
united to form the Universal Protein Knowledgebase (UniProt) consortium. Its
approach is close to ours since it assigns a unique id to each entry in protein
databases and provides various services for biological research.

In this system, we need to set a user-defined threshold for limiting the number
of results. In the future, this operation needs to be automated. In addition,
although we used the ISIS public key as a compound representation, we need
compound descriptors for the efficient substructure search in order to recognize
of the characteristic substructure patterns.

Heterogeneous Database Federation Using Grid Technology 51

Acknowledgments

This study was performed through IT-program of Ministry of Education, Cul-
ture, Sports, Science and Technology. The authors thank to the Biogrid project
members.

References

1. Nakamura, H., Date, S., Matsuda, H., Shimojo, S.: A Challenge towards Next-
Generation Research Infrastructure for Advanced Life Science. New Generation
Computing 22 (2004) 157–166

2. Foster, I., Kesselman, C., Nick, J. ,Tuecke, S.: The Physiology of the Grid. An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG, Global Grid Forum (2002) http://www.ggf.org/

3. Global Grid Forum, http://www.gridforum.org/
4. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A.,

Gasteiger, E, Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S.,
Schneider M.: The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Research 31 (2003) 365–370

5. Wu, C.H., Yeh, L.S., Huang, H., Arminski, L., Castro-Alvear, J., Chen, Y., Hu, Z.,
Kourtesis, P., Ledley, R.S., Suzek, B.E., Vinayaka, C.R., Zhang, J., Barker, W.C.:
The Protein Information Resource. Nucleic Acids Research 31 (2003) 345–347

6. Bourne, P.E., Addess, K.J., Bluhm, W.F., Chen, L., Deshpande, N., Feng, Z.,
Fleri, W., Green, R., Merino-Ott, J.C., Townsend-Merino, W., Weissig, H., West-
brook, J., Berman, H.M.: The distribution and query systems of the RCSB Protein
Data Bank. Nucleic Acids Research 32 (Database issue) (2004) D223–D225

7. OGSA-DAI Project, http://www.ogsadai.org
8. UK e-Science (GRID) core programme, http://www.escience-grid.org.uk/
9. Kosaka, T., Tohsato, Y., Date, S., Hatsuda, H., Shimojo, S.: An OGSA-Based In-

tegration of Life Scientific Resources toward Drug Discovery Proc. of HealthGRID
2004, Clermont-Ferrand (2004 in press)

10. Schuffenhauer, A., Zimmermann, J., Stoop, R., van der Vyver, J.J., Lecchini, S.,
Jacoby, E.: An ontology for pharmaceutical ligands and its application for in silico
screening and library design. Journal of Information and Computer Sciences 42
(2002) 947–55

11. Schuffenhauer, A., Floersheim, P., Acklin, P., Jacoby, E.: Similarity metrics for
ligands reflecting the similarity of the target proteins. Journal of Information and
Computer Sciences 43 (2003) 391–405

12. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research 25 (1997) 3389–3402

13. Xu, J.: GMA: A Generic Match Algorithm for structural Homomorphism, Isomor-
phism, Maximal Common Substructure Match and Its Applications. Journal of
Chemical Information and Computer Sciences 36 (1996) 25–34.

14. Flower, D.R.: On the Properties of Bit String-Based Measures of Chemical Simi-
larity. Journal of Chemical Information and Computer Sciences 38 (1998) 379–386

15. MDL Drug Data Report Version 2003.2, MDL ISIS/HOST software, MDL Infor-
mation Systems, Inc. San Leandro, CA, http://www.mdl.com

52 Y. Tohsato et al.

16. Brown, R.D., Martin, Y.C.: Use of Structure-Activity Data To Compare Structure-
Based Clustering Methods and Descriptors for Use in Compound Selection. Journal
of Information and Computer Sciences 36 (1996) 572–584

17. Xue, L., Godden, J.W., Bajorath, J.: Database Searching for Compounds with Sim-
ilar Biological Activity Using Short Binary Bit String Representations of Molecules.
Journal of Chemical Information and Computer Sciences 39 (1996) 881–886

18. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A.,
O’Donovan, C., Redaschi, N., Yeh, L.S.: UniProt: the Universal Protein Knowl-
edgebase. Nucleic Acids Research 32 (Database issue) (2004) D115–D119

Grid Portal Interface for Interactive Use and
Monitoring of High-Throughput Proteome

Annotation

Atif Shahab1, Danny Chuon1, Toyotaro Suzumua2, Wilfred W. Li5,
Robert W. Byrnes5, Kouji Tanaka3,4, Larry Ang1, Satoshi Matsuoka2,3,

Philip E. Bourne5,6, Mark A. Miller5, and Peter W. Arzberger7,∗

1 Bioinformatics Institute, 30 Biopolis Street,
#07-01, Matrix, Singapore 138671

{atif, dannyc, larry}@bii.a-star.edu.sg
2 Dept. of Mathematical and Computing Sciences

3 Global Scientific Information and Computing Center
4 Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Research and Development for Applied Advanced

5 Computational Science and Technology,
Japan Science and Technology Agency,

4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
{tanaka, suzumura, matsu}@is.titech.ac.jp

Integrative Biosciences Program
San Diego Supercomputer Center
6 Department of Pharmacology

7 Life Sciences Initiatives,
University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093, USA
{wilfred, rbyrnes, bourne, mmiller}@sdsc.edu,

parzberger@ucsd.edu

Abstract. High-throughput proteome annotation refers to the activity
of extracting information from all proteins in a particular organism us-
ing bioinformatics software on a high performance computing platform
such as the grid. The Encyclopedia of Life (EOL) project [1] aims to
catalog all proteins in all species for public benefits using an Integra-
tive Genome Annotation Pipeline [2] (iGAP). The intrinsic complexity
of the pipeline makes iGAP an ideal life sciences application to drive
grid software development. It is a flagship application for the TeraGrid
project [3]. The deployment of iGAP on the grid using grid middleware
and mediator software has been described previously [4]. The heteroge-
neous and distributed computing environment on the grid requires an
interactive user interface where jobs may be submitted and monitored.
Here we describe our international collaborative effort in creating a grid

� To whom correspondence should be addressed. Phone 858-822-1079, Fax 858-822-
4767

pp. 53–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

54 A. Shahab et al.

portal solution for grid computing in life sciences under the auspices of
PRAGMA [5]. Specifically, the development of GridMonitor for interac-
tive monitor of iGAP workflow, and the use of a GridSpeed [6] generated
iGAP application portal are described. The portal solution was part of
the EOL demonstration at Supercomputing 2003 (SC’03) [7], where re-
sources from 6 institutions on 5 continents are utilized to annotate more
than 36,000 proteins from various species. It is a testimony to the ne-
cessity and expediency for international collaboration in an increasingly
global grid computational environment to advance life sciences research.

1 Introduction

The international genome sequencing effort has produced a deluge of genomic
information. To date, more than 132 complete, and over 800 partial proteomes
are publicly available. However, genome sequencing per se does not provide cures
for diseases and cancers. There is now a global push to actively translate the
genomic/proteomic information into tangible benefits for public health and edu-
cation. The Encyclopedia of Life (EOL) project [1] aims to provide a comprehen-
sive electronic reference system for biological research and education. Currently
our annotation effort focuses on predicting protein structural information using
an Integrative Genome Annotation Pipeline, iGAP [2]. The computational re-
quirement of iGAP and our initial experience in using AppLeS Parameter Sweep
Template (APST) [8] to deploy it on the grid has been previously described [4].
As discussed in the paper [4], a prototype Bioinformatics Workflow Management
System (BWMS) is essential to facilitate the multi-genome annotation effort.

EOL has become a global collaborative effort over the past two years. During
SC’03, 6 institutions from North America, South America, Asia, Australia, and
Europe participated in the demonstration of grid deployment of the EOL pipeline
using grid workflow software. While the experience in using the grid workflow
software during SC’03 is described in details in a separate manuscript [5], the
international collaborative activities to develop an integrated grid portal solution
for iGAP under the auspices of PRAGMA [9] in the EOL project is described in
this paper. We first provide a brief survey of common portal solutions. Then we
describe our on-going collaborative efforts to provide an advanced grid portal
solution for life sciences using GridSpeed and GridMonitor.

1.1 Grid Portals

Grid portals are defined as a “class of www application servers the provide
a secure online environment for gathering information about grid services and
resources as well as provide tools for utilizing these grid services and resources to
perform useful tasks” [10]. The Grid Computing Environment Research Group
[11] divides grid portals into user portals and application portals. While the
former provides grid services such as single sign-on, job submission and status
tracking, etc. for a Virtual Organization (VO), the latter is the interface for

Grid Portal Interface for Interactive Use and Monitoring 55

most scientific users who wish to harness the computational power on the grid
to execute complex application tasks in a problem solving environment (PSE).
The Cactus portal [10], Astrophysics Simulation Collaboratory (ASC) [12] are
early examples of the latter, whereas PACI HotPage [13] is an early example of
the former.

Development efforts like GridPort toolkit [14], used for the development of
PACI HotPage, or the Grid Portal Development Toolkit (GPDK) [15], aim to
ease the development of grid portals. These toolkits provide an abstract API
to the fundamental Globus layer. This allows a portal developer to focus on
the development of the portal rather than keeping up with new Globus releases
and changes. We briefly describe these toolkits below; then we identify some
challenges that we tried to address during our portal development.

1.2 Toolkits for Grid Application Portals

Commodity of Grid (COG) [16] or Commodity Grid Kits is an effort to provide
native and wrapper implementation of Globus [17] in programming languages
such as Perl, Python and Java. The general development architecture supported
by these implementations requires a user to interact directly with the COGs to
access grid services.

GridPort toolkit is a Perl API built on top of the Perl CoG [18]. It employs the
Globus Toolkit to connect to remote resources for job execution and information
service. Therefore, it requires a local copy of the Globus client to be installed.
Once an application portal is developed, the toolkit requires the user to have a
valid Globus certificate in order to interact with a grid execution environment.
Grid Portal Development Toolkit (GPDK) is a Java based implementation built
on top of the Java CoG [19]. It contains a native implementation of the Globus
client and does not require a Globus client installation on the client. A portal
built with this toolkit also requires a user to have a valid Globus certificate.

GridSphere [20], part of the GridLab [21] project, provides a portlet model
for developers to develop third-party portlet web applications. Once the port-
let applications are deployed, it is easy for users to select portlets of interest
and create a personalized grid portal. The Open Grid Computing Environment
(OGCE) [22] is a recent project funded by the US National Science Foundation
to provide sharable grid portal solutions, which leverages a number of ongoing
portal development efforts. The myGrid project [23], part of the UK e-Science
project, aims to provide web services based portal solutions.

The toolkits have ranged from simple API’s to the portlet model of Grid-
Sphere with support for web services. The portlet API is standardized by the
Java Community Process (JCP). Efforts are also underway to identify best prac-
tices in portal design and implementation [11]. One common theme in all these
toolkits is the requirement for the application portal/portlet developer to inter-
act directly with the underlying grid service. The people in charge of building
application portals are often grid experts and/or savvy web programmers. There-
fore, providing such developers with potentially sophisticated APIs is adequate
so far.

56 A. Shahab et al.

Current trends show that the number and variety of potential grid applica-
tions will soon increase sharply. Application portals are to be built by devel-
opers with much varied background, especially in various scientific fields. The
specialized developers are often computer literate but not necessarily computer
scientists skilled in grid programming. The rapid changes in Globus toolkits,
and the cascading effect on the grid portal development toolkits means that
these portal developers are unable and unwilling to keep up with these changes.
Consequently, we argue that there is a strong need for an integrated environ-
ment that allows application developers to generate their application portals in
a straightforward fashion, without having sophisticated knowledge of either web
programming or grid programming.

1.3 GridSpeed

The main goal of GridSpeed [6], developed at Tokyo Institute of Technology
(TiTech), is to make it possible to meet this requirement, i.e., to allow users
to dynamically generate application portals or instantiate/publish them with-
out any programming. The overall architecture and deployment of a GridSpeed
application portal [24] is depicted in Fig. 1.

Fig. 1. GridSpeed Architecture

It provides a wizard-like web interface, the Grid Portal Generation Wizard,
to dynamically generate application portals and/or publish them. The wizard
guides a user to describe grid resources and target applications. Then it generates
a portal that can be published to the public or restricted to certain groups.

Grid Portal Interface for Interactive Use and Monitoring 57

The GridSpeed Portal Repository (Descriptor Repository) allows portal cre-
ators to publish their generated application portals. Generated application por-
tals on the GridSpeed server can be published and shared among other user.
It also provides role-based access control mechanism to limit the usage of reg-
istered application portals in the system. Users may search the Repository for
their target applications or describe the name, category, manufacturer, physical
resources to be used.

GridSpeed separates applications from resources clearly. A portal corresponds
to the binding from an application to multiple resources. This makes it possible
for a portal administrator to reuse an application interface published by someone
else, and bind it to any set of resources.

Application Structures and Grid Middleware Supported by Grid-
Speed. For GridSpeed to be useful to a large community of users it must
support a wide spectrum of application structures that are relevant to exist-
ing scientific applications. Currently, GridSpeed supports the following: 1) A
single task to be invoked once, 2) A single task to be invoked multiple times
with different input, or 3) combination of the above, with possible dependen-
cies among tasks. The first type is representative of many applications, for in-
stance, ones in which users periodically compare their experimental data with
a model. The second type is often labeled as a parameter sweep application
and has been shown to be well-suited to grid executions. Other scientific ap-
plications that have more complex structures are of the third type. GridSpeed
offers a simple workflow schema to describe and support these application
structures.

In addition, different applications may use different computing services such
as Globus and SSH, different schedulers such as Condor [25], LoadLeveler, LSF,
PBS, etc., and different data services such as GridFTP [26] and SRB [27]. Grid-
Speed meet these requirements by providing a higher-level resource description
bound to tasks. GridSpeed currently makes use of APST as the grid workflow
engine and meta-scheduler. DAGMan [28] and UNICORE [29] are examples of
other workflow engines to be supported.

2 Generating iGAP Application Portal with GridSpeed

The Grid Portal Generation Wizard is organized as a set of web pages in which
the user is asked to answer questions concerning grid resources and the target
application. Specifically, an application portal is generated by defining two ob-
jects: a computing environment object and an application object, and then these
objects are bound together. Definitions are independent from each other, thus,
objects need only to be defined once and can be reused by the same or other
portal creators. We illustrate the process of instantiating the iGAP application
portal as follows:

58 A. Shahab et al.

2.1 Computing Environment

The first step of defining the computing environment is performed by resource
providers, allowing them to register their computing environment that can be used
by portals generated byGridSpeed.A computing environment is comprised of stor-
age resources (disks) and of compute resources (hosts).Each disk requires a host
server, a default directory for application input/output, an access protocol such
as GridFTP, SRB or SFTP (Fig. 2). Each host requires an access protocol such as
Globus Gram, SSH, and scheduler methods such as Condor, PBS or LoadLeveler.

Fig. 2. Data Storage and hosts

Grid Portal Interface for Interactive Use and Monitoring 59

2.2 Application Information and Parameters

Next, the user fills in various information about the target application, e.g.,
name, subtitle, manufacturer, category, textual description, in a form. Such infor-
mation is used to categorize applications, allowing one to search for target appli-
cations with the keywords. This information may be optionally displayed (Fig. 3).

The user also decides which application parameter is exposed in the gener-
ated portal by specifying its name, widget type, title, data type, method type,

Fig. 3. Application Information and Parameters

60 A. Shahab et al.

default value, and description. The widget type is used to represent the actual
widget component for the parameter and can be chosen from “text”, “textarea”,
“select”, “upload file”, and “password”. For a parameter whose widget type is
“select”, one must input a list of items that is name-value pairs, so that portal
users can select one or more of these items. Moreover, a parameter whose wid-
get type is “upload file” is a file uploaded by the portal user. Some parameters
must be passed to applications as a file even though they are inputted by users
as string. For this case, one can specify “file” as the method type and then a
temporary file containing the value of the parameter is created at runtime and
passed to the application.

2.3 Advanced Application Archietcture

As iGAP is a set of bioinformatics applications pipelined with task dependencies,
the portal creator can define an advanced structure for the target application,
denoted by “application pipeline” in the wizard (Fig. 4). The pipeline is struc-
tured as one or more tasks. A task corresponds to the action of launching a

Fig. 4. iGAP Pipeline Description

Grid Portal Interface for Interactive Use and Monitoring 61

certain executable. Each task can be defined by filling in an executable path, in-
put, output, stdout, stdin, stderr, estimated runtime, priority, and a description.
Dependency between multiple tasks can be controlled by adjusting the task pri-
orities. A task with higher priority can be executed at an earlier stage. In each
form, it is possible to refer to the actual user input data for each parameter
defined in the Parameter Page (as shown in Fig. 3).

2.4 iGAP GridSpeed Portal Interface and Monitoring

2.5 Portal Publication

In the GridSpeed context, an application portal is considered to be an interface
to the application along with specific set of resources. Therefore, as the final step,
generation of a portal is accomplished by binding an application with multiple
computing environments through this step. This binding operation realizes on-
demand creation of application portals.

The iGAP Portal (Fig. 5) is generated by selecting one application interface
and one computing environment, both of which are already defined and published

Fig. 5. iGAP GridSpeed Portal interface and monitoring

62 A. Shahab et al.

in the previous steps. From this portal page, a user can upload a set of proteins
or a complete proteome, which is the input for iGAP. All subsequent steps are
automatically executed on the user’s behalf using APST. A simple web client
queries the APST daemon for task status to be displayed. The data and output
for particular tasks may be accessed from the web if desired.

3 GridMonitor Portal Design and Development

While the application portal generated with GridSpeed provides the interactive
interface for a web user to submit proteins or proteomes of interest for analysis
using iGAP, the large scale automated analysis of all proteomes in the EOL
project requires a robust, scalable workflow management system which tracks
overall progress and provide recovery information in case of resource failure [4].
Such a system also requires an interactive user interface for monitoring of genome
annotation status and task progression. We now describe the GridMonitor Portal
developed by the Bioinformatics Institute in Singapore.

3.1 System Overview

Integrative Genome Annotation Pipeline (iGAP) incorporates well-established
bioinformatics tools to predict the structure of a protein from its sequence. When
annotating a large number of protein sequences, the pipeline is required to run
for weeks utilizing geographically and internationally distributed compute and
storage resources. One unique feature of this PSE is that various users of the
pipeline do not necessarily want or need to execute their own pipeline instance.
They only need to queue their jobs with the appropriate priority and leave it to
the workflow management system to handle the job submission and execution.

Currently, the iGAP portal consists of two main front-end components: a
publicly available information portal, and a restricted access admin portal. The
portal architecture (see Fig. 6) consists of information and admin portals sharing
a common backend relational database. The database allows retrieval access for
the information portal, and updates/modifications for the admin portal. This
design allows abstraction of grid middleware, workflow and job management
related issues from the actual portal developers. Using this design, the informa-
tion and admin portals can be developed using appropriate tools and application
frameworks. The prototype implementation of the portal currently consists of
the Information Portal only.

The implementation of information portal is completed in Java Server Pages
(JSPs), using the open source Tomcat servlet container bundled with another
open source Java 2 Enterprise Edition (J2EE) compliant application server,
JBoss [30]. To implement the portal we used a 3-tier model: client, web and
database tier. As in the situation with the development of BWMS [5], the num-
ber of emerging open source solutions are either premature or not easily adapt-
able to the production requirement of iGAP. Our approach is to support routine
production use of the grid and comply with emerging grid service standards as

Grid Portal Interface for Interactive Use and Monitoring 63

Fig. 6. iGAP Grid Monitor Portal Architecture

they stabilize. The current 3-tier model provides the functionalities required and
offers excellent performance.

3.2 GridMonitor for iGAP

The iGAP portal is structured to present users with the ability to monitor the
progress of the pipeline at either the proteome level, or the task level. The
underlying information is retrieved from the BWMS relational database engine.

The Task Status page (Fig. 7) offers detailed look for all the tasks associated
with a protein. A task is a single application executed with a single protein
sequence on one of the requested cpus. The task execution host, run time, and
status may all be viewed from the web interface. As tasks for each proteome
are distributed to different resources, the status of a particular task may be
queried to see which resource is used, and this information may be used by
meta-schedulers to determine throughput from a particular resource.

Genome summary lists the genomes and at what state they are in: Not Sub-
mitted, Submitted, Not Processed or Processed. All genome names are further
linked to provide the user with a small summary about the genome, structure
id and structure information, if applicable.

The Genome Status page allows the user to look at the overall progress and
see how many genomes have been submitted to the pipeline and how many have
finished. Those interested in the status of a particular genome can select the
genome of their choice and find specific information pertaining to it. A hyperlink
to the EOL Book is also present for more information.

64 A. Shahab et al.

Fig. 7. The IGAP GridMonitor Task Status Page

4 Discussion

The large scale proteome annotation undertaken by the EOL project poses chal-
lenges to grid software development in areas such as grid workflow, scheduling
and portal development. The rapid change in Globus Toolkits (GT) in the past
few years is necessary in the long term, but poses a challenge to running life sci-
ences applications on the grid. In particular, the current scientific requirement
of proteome analysis cannot wait until grid computing standards are stable. For-
tunately, with the hard work of numerous developers worldwide, the situation
is improving. PRAGMA has provided a mutually beneficial environment where
developers from the Pacific Rim can establish collaborations, exchange ideas and
promote grid middleware and application development.

The collaborative effort on the EOL project by developers from BII, TiTech
and SDSC is crucial in making the demonstration at SC’03 [7] a success. Grid-
Speed from TiTech provided a much needed application portal where users can
submit jobs from a web interface. The job submitted now includes whole pro-
teome analysis made possible by the development of grid computation resources.

Grid Portal Interface for Interactive Use and Monitoring 65

The GridMonitor from BII provides a prototype user portal where large scale
automated analysis may be monitored. Under the hood, both GridSpeed and
GridMonitor utilize APST, part of the NMI [31] and NPACKage [32], for grid
scheduling and task execution.

While both GridSpeed and GridMonitor uses APST as the underlying grid
execution engine, GridSpeed generates the task XML input for APST, whereas
GridMonitor relies on BWMS to provide the XML input. Since APST relies on
a XML file for task description, resource description, these components may be
loosely coupled together. The XML input from GridSpeed may be consumed
by BWMS so that tasks submitted by GridSpeed may also be monitored from
GridMonitor. The XML input required by APST may eventually adopt the de-
veloping standards of workflow specification language [33].

The generation of the application portal by GridSpeed is a simple process.
However, APST was originally designed for a single user because it aims at
user-level scheduling. Clearly using APST as GridSpeed’s workflow engine is
not scalable in terms of number of simultaneous users. Potentially this problem
may be resolved using BWMS, which may be enhanced to record multiple user
requests and dispatches them to APST. In fact, such a model will also han-
dle situations where multiple users submit the same proteome to be processed,
or where a proteome has already been scheduled by the automated proteome
annotation update process. The disadvantage of such a system is that BWMS
must act as a central server for user requests. Such scenarios are also common
in data services using SRB or GridFTP and solutions are not easily available at
this time.

Grid security is another topic receiving much attention recently. The devel-
opment of a user portal which supports GSI (Global Security Infrastructure)
with single sign on and data privacy is important for production use of life sci-
ences applications. The economic model of the grid also dictates that some users
will be able to afford access to more resources. Therefore, our immediate goal
is to investigate new developments in the grid portal toolkits, and improve the
reusability of our software.

Our future plan is to generate a loosely coupled portal solution using Grid-
Speed, and GridMonitor. Currently the portlet technology appears most suit-
able. GridSpeed will support “GridSpeed Portlets”, which can be integrated and
runnable on the portlet containers such as GridSphere and JetSpeed. GridSphere
is nearly compatible with IBM WebSphere 4.2. While initially WebSphere portlet
API was based on JetSpeed; WebSphere 4+ API is proprietary. The future portal
architecture will be built to leverage open source technologies like Struts, Jet-
speed, Turbine, Velocity, etc. [34], while abstracting the underlying grid services
architecture to BWMS and APST. Currently we are also evaluating GridSphere,
OGCE portal and myGrid development efforts.

A more distant goal is to realize distributed data service on the grid from the
grid portal. This will allow user to view analysis results on the fly while proteins
are being annotated on the grid. We are currently exploring the use of OGSA-
DAI [35] to allow the users to access the EOL data warehouse, which contains

66 A. Shahab et al.

value added information besides the pipeline output. The information will be
integrated in a more general grid portal, which will encompass GridMonitor,
GridSpeed, BWMS and the EOL data warehouse. The end result would be state
of the art high throughput proteome analysis in the grid environment.

5 Conclusion

In this paper, we have shown that by leveraging on the collective expertise of
the 3 PRAGMA sites, SDSC, TiTech and BII, we were able to speed up the
whole process of development and deployment of iGAP grid portal. The scien-
tific achievement from the EOL demo during SC’03 shows that grid technology is
finally beginning to enable biological research. The reciprocity between grid soft-
ware development and high throughput proteome analysis will make the routine
use of the grid a reality in the near future.

Acknowledgements

The authors would like to thank Dr Gunaratnum Rajagopal, Elise Tan, and
Stephen Wong from the Bioinformatics Institute for valuable input; Jim Hayes,
Adam Birnbaum, Henri Casanova at SDSC for their work in the workflow and
APST; Hidemoto Nakada at TiTech for help during GridSpeed development.
P.W. Arzberger wishes to acknowledge the support of the National Science Foun-
dation for PRAGMA (Grant No. INT-0314015), as well as that of the National
Institutes of Health for the National Biomedical Computation Resource (P 41
RR08605). PRAGMA is supported by its twenty member institutions and their
respective funding organizations. W.W. Li is also supported by the National
Partnership fro Advanced Computational Infrastructure (NPACI), funded by
the National Science Foundation (NSF) Grant No. ASC 9619020, and System-
atic Protein Annotation and Modeling, funded by the National Institutes of
Health (NIH) Grant No. GM63208-01A1S1.

References

1. The Encyclopedia of Life Project, http://eol.sdsc.edu.
2. Li, W. W., Quinn, G. B., Alexandrov, N. N., Bourne, P. E. & Shindyalov, I. N.,

“A comparative proteomics resource: proteins of Arabidopsis thaliana”, Genome
Biol, 4, pp.R51, 2003.

3. TeraGrid, http://www.teragrid.org.
4. Li, W. W. et al., “The Encyclopedia of Life Project: Grid Software and Deploy-

ment”, New Generation Computing, In Press, 2004.
5. Birnbaum, A. et al., “Grid Workflow Software for High-Throughput Proteome

Annotation Pipeline”, Life Sciences Grid Workshop Proceedings, Submitted, 2004.
6. GridSpeed, http://www.gridspeed.org.
7. Supercomputing 2003, http://www.sc-conference.org/sc2003/.

Grid Portal Interface for Interactive Use and Monitoring 67

8. Casanova, H. & Berman, F. in “Grid Computing: Making the Global Infrastructure
a Reality”. (eds. Berman, F., Fox, G. C. & Hey, A. J. G.). Wiley Publishers, Inc.,
West Sussex, 2003.

9. Pacific Rim Applications and Grid Middleware Assembly,
http://www.pragma-grid.net/.

10. Cactus Project — An open source problem solving environment,
http://www.cactuscode.org/Presentations/GridPortals_2000.ppt.

11. Grid Compute Environment (GCE) Research Group-Global Grid Forum,
http://www.computingportals.org.

12. The Astrophysics Simulation Collaboratory (ASC), https://www.ascportal.org.
13. NPACI HotPage Grid Computing Portal, http://hotpage.paci.org.
14. Thomas, M. et al., “The GridPort Toolkit Architecture for Building Grid Portals”,

in the 10th IEEE Intl. Symp. on High Perf. Dist. Comp.
15. Novotny, J. in “Concurrency and Computation: Practice and Experience”. pp.1129–

1144. 2002.
16. Commodity Grid Kits, http://www-unix.globus.org/cog/.
17. The Globus Alliance, http://www.globus.org.
18. Perl CoG, https://gridport.npaci.edu/cog/.
19. von Laszewski, G., Foster, I., Gawor, J. & Lane, P., “A Java Commodity Grid Kit”,

Concurrency and Computation: Practice and Experience, 13, pp.643–662, 2001.
20. GridSphere, http://www.gridsphere.org.
21. GridLab, http://www.gridlab.org.
22. OGCE: Open Grid Computing Environment, http://www.ogce.org/index.php.
23. The MyGrid Project, http://www.ebi.ac.uk/mygrid/.
24. Suzumura, T., Nakada, H. & Matsuoka, S., “GridSpeed: A Web-based Grid Portal

Generation Server”, in CCGrid, Poster.
25. Litzkow, M., Livny, M. & Mutka, M., “Condor - a hunter of idle workstations.” in

Proceedings of the 8th International Conference of Distributed Computing Systems,
104–111, June 1988.

26. Allcock, W. et al., “GridFTP: Protocol Extension to FTP for the Grid, Grid Forum
Internet-Draft”, in March, 2001.

27. The Storage Resource Broker, http://www.npaci.edu/dice/srb.
28. DAGMan, http://www.cs.wisc.edu/condor/dagman/.
29. UNiform Interface to COmputing REsources (UNICORE),

http://www.unicore.de/.
30. JBOSS, http://www.jboss.org.
31. NSF Middleware Initiative, http://www.nsf-middleware.org/.
32. NPACIgrid, http://npacigrid.npaci.edu/.
33. Workflow Management Research Group, http://www.isi.edu/~deelman/wfm-rg/.
34. The Apache Jakarta Project, http://jakarta.apache.org.
35. OGSA-Data Access and Integration, http://www.ogsadai.org.uk/.

Grid Workflow Software for a High-Throughput
Proteome Annotation Pipeline�

Adam Birnbaum1, James Hayes1, Wilfred W. Li1, Mark A. Miller1,
Peter W. Arzberger2, Phililp E. Bourne1,2, and Henri Casanova1,2

1 San Diego Supercomputer Center,
La Jolla, CA 92093, USA

2 University of California, San Diego,
La Jolla, CA 92093, USA

{birnbaum, jhayes, wilfred, miller, parzberg, bourne, casanova}@sdsc.edu

Abstract. The goal of the Encyclopedia of Life (EOL) Project is to
predict structural information for all proteins, in all organisms. This
calculation presents challenges both in terms of the scale of the com-
putational resources required (approximately 1.8 million CPU hours),
as well as in data and workflow management. While tools are avail-
able that solve some subsets of these problems, it was necessary for us
to build software to integrate and manage the overall Grid application
execution. In this paper, we present this workflow system, detail its com-
ponents, and report on the performance of our initial prototype imple-
mentation for runs over a large-scale Grid platform during the SC’03
conference.

1 Introduction

In 1995, the influenza virus became the first genome to be completely sequenced.
Since that time, more than 1000 other organisms have been at least partially
sequenced and are freely available at the National Center for Biotechnology
Information (NCBI) [30]. As of this writing, this includes the sequence infor-
mation of more than 1.6 million different proteins in the non-redundant (NR)
database. However, protein sequence information is only part of the story. While
a protein sequence determines its shape, and biological function, the ability to
predict these features from the sequence remains one of the elusive goals of
modern biology. At present, structure and function determinations rely upon
laborious experimental methods. For example, the structures of approximately
24,000 unique proteins have been measured experimentally and deposited in the

� This research was supported in part by the National Science Foundation under
the NPACI Cooperative Agreement No. ACI-9619020 and under award No. ACI-
0086092. W.W. Li, is also supported in part by PRAGMA, funded by NSF Grant
No. INT-0314015, and Systematic Protein Annotation and Modeling, funded by the
National Institutes of Health (NIH) Grant No. GM63208-01A1S1.

pp. 68–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

Grid Workflow Software for a High-Throughput Proteome 69

Protein Data Bank [9]. Despite the advent of high throughput crystallization
pipelines [25], there is still a large disparity between the rates of protein struc-
ture and sequence determination. Strategies must be adopted that allow one to
infer protein structure and functions based on sequence alone in order to gain
immediate benefits from genome sequencing efforts.

As part of a large body of works devoted towards this goal, we had previously
described the construction of a fold library (i.e., a library of known structural
templates based on known structures), and the development of an Integrative
Genome Annotation Pipeline (iGAP) [28]. iGAP, which incorporates a number
of well established bioinformatics applications, predicts protein structure based
on sequence and structural similarity to the fold library templates. It has been
successfully used to annotate more than 130 genomes in an international effort
known as the Encyclopedia of Life project, designed to catalog the complete
proteome of every living species in a flexible reference system [20]. Our goal in
this work is to scale this system to process all existing protein sequences, without
human intervention, and to deposit the output in a public database for access
by the entire scientific community.

The magnitude of the computation to be accomplished has been quantified
and discussed previously [27]. Briefly, our estimate is that the overall calcula-
tion will require approximately 1.8 million CPU hours on a 1.8 GHz CPU, or
more than 200 years on a single CPU. This calculation needs to be repeated
and updated as more sequences and structures become available. Because of
the overall scale of these computational requirements, it was necessary to de-
ploy iGAP on a multi-institutional international Grid platform. The complexity
of the calculation made it necessary to develop a domain specific bioinformat-
ics workflow management system, to automatically manage the transfer of data
files and the correct and efficient distribution of calculations to distributed re-
sources, while maintaining correct records on the ongoing state of the overall
computation.

In this paper, we report the progress we have made in developing an inte-
grated grid workflow solution for EOL, a prototype of which was demonstrated
at SC’03 using storage and compute resources distributed over various interna-
tional partners, including PRAGMA [33] members such as the Tokyo Institute
of Technology (TiTech), SDSC, and Singapore’s Bioinformatics Institute (BII).
The collaborative effort between the international partners will be described in
a separate submission. In this particular paper, we focus on the grid workflow
software, specifically:

1. We provide technical details about the implementation, which were driven
by and critical for EOL but are relevant to Grid applications at large;

2. We report on the status of our implementation and present
experimental results obtained on a large-scale Grid during the SC’03 confer-
ence; and

3. Based on this hands-on experience with our prototype software, we have
identified two scalability and performance bottlenecks that we have removed
in the current version of the software.

70 A. Birnbaum et al.

2 The APST Grid Execution Environment

2.1 Challenges for Deploying Grid Applications

The EOL project is an example of a Grid application that is attempting to
achieve high levels of performance and scale via the use of a Grid platform
where aggregated resources (in our case compute, storage, and data collections)
are distributed among different institutions nation- or world-wide [22, 7]. Three
main challenges typically arise for such application deployment: (i) application
scheduling; (ii) resource heterogeneity; and (iii) deployment logistics. We briefly
discuss each challenge below; we then introduce the AppLeS Parameter Sweep
Template (APST) and explain how it provides software technology that ad-
dresses the above challenges at least partially.

The scheduling problem, i.e. assigning application components to resources
with a view to optimize some metric of performance, has been studied for decades
and there is a large literature for different classes of applications (e.g. see [26, 11]
for surveys). Unfortunately, most algorithms are based on assumptions that do
not hold on Grid platforms. For instance, it is often assumed that is is possible
to obtain 100% accurate predictions of computation and data transfer times,
that resources deliver constant performance over time without failing, or that
network topologies are simple (e.g. fully connected). For this reason, practi-
cal solutions for Grid scheduling generally involve the development of adaptive
scheduling and/or runtime re-scheduling techniques, rather than the direct use of
existing scheduling algorithms [8, 10, 12, 15, 18, 34, 37, 39]. In the specific context
of high throughput computations, a number of tools are available that auto-
matically schedule Grid applications using such techniques (e.g., Condor [36],
Nimrod/G [1], APST [14]).

When deploying a Grid application, these questions of efficient resource use
may be dwarfed by the overwhelming practical problems caused by the hetero-
geneity of the resources, which can vary in operating system, local schedulers,
and other factors. The Globus Alliance [21] has strived to reduce some of the bar-
riers raised by resource heterogeneity by providing a single security model, and a
consistent interface for accessing various batch schedulers. However, Globus has
not yet achieved ubiquity, and it suffers from the rapid rate of change in its APIs
over the last several years. Therefore, for the time being, Globus must be viewed
as one system among a variety of systems the application developer must deal
with. In their more recent work, the Globus Alliance has focused on creating
standards and prototypes to allow distributed scientific applications to be built
using Web Services, which are important emerging enterprise technologies [31].
The use of these standards will require major changes in the software infrastruc-
ture for computational centers, which will in turn imply major changes in the
overall approach to application and system design. While there is good reason
to believe that these last developments will provide a ubiquitous, standardized
Grid software infrastructure in the medium-term, our goal is to deploy and run
the EOL application on as many systems as possible today.

Grid Workflow Software for a High-Throughput Proteome 71

A second challenge is that of managing the logistics of application deploy-
ment. When running large applications (e.g., many thousands of tasks, input
files, and output files), it is advantageous to use a scalable and robust (i.e., re-
silient to software and hardware crashes) bookkeeping system to track resource
status, computation status, file transfer status, and file (and replica) locations.
Providing this type of functionality in a scalable way raises complex computer
science questions, as it often requires a distributed implementation and dis-
tributed algorithms (e.g., at the Virtual Organization level [23]). In our context
however, the system merely needs to keep track of data relevant to one appli-
cation execution, which can be done in a centralized fashion, for instance in a
centralized bookkeeping server using a relational database. The main require-
ments are that the bookkeeping must be completely transparent to the user,
efficient, and resilient to server failures. Furthermore, it is clearly necessary that
all application deployment (e.g., job launching, monitoring, fault-detection and
restart, data movements) be automated.

2.2 The APST Software

Since our goal in this work is to execute a large number of essentially inde-
pendent tasks to generate a biology result, rather than to conduct research on
novel software infrastructures, we chose to build on an existing platform that
already meets many of the criteria required for our system. We selected the
AppLeS Parameter Sweep Template (APST) [14, 4], which has already demon-
strated success in managing heterogeneous Grid resources for real-world appli-
cations [13]. The initial goal of the APST project was to address challenge (i)
in Section 2.1, and thus APST currently uses intelligent adaptive scheduling
heuristics.

APST runs as a user agent, and is able to run unmodified applications (as
long as these applications perform I/O via files). APST can use a variety of meth-
ods to access computational resources (Globus [21], Condor [36], NetSolve [2],
batch schedulers – LoadLeveler, LSF, PBS –, or even simple SSH connections),
and to store and transfer data (GridFTP [3], SRB [5], SCP). In addition, APST
embeds an intelligent scheduler that makes use of Grid resource information
(available via MDS [17], NWS [38] and Ganglia [24]) to make appropriate de-
cisions when mapping computation and data to heterogeneous Grid resources.
This is all done “under the hood” by a software layer that abstracts away the
differences among the resources and the way in which they are accessed, thereby
addressing challenge (ii) in Section 2.1. Note that this software abstraction layer
is a completely separate and reusable module, Elagi [19], that we have developed
and now distributed along with APST.

As depicted in Fig. 1, the main APST program runs as a background process
or daemon that can receive commands from an APST client (APST provides
both a command-line client and a Java API). These commands are structured
with an XML syntax and make it possible to make APST aware of new avail-
able resources, new application tasks to execute, and new application data files,
and to check on the status of the computation. APST uses the aforementioned

72 A. Birnbaum et al.

command−line

 APST Client

Tool
Java API

 APST Daemon

XML

storage

interactive

batch
Grid Resources

Grid Services

User

Fig. 1. APST Software Architecture

Grid services to transparently deploy application tasks and data onto compute
resources (both batch and interactive) and storage resources.

In the next two sections we discuss the way in which APST manages batch-
scheduled resources, and how APST addresses only parts of challenge (iii).

2.3 Batch-Scheduled Resources in APST

The computing resources available to the EOL project consist of a mixture of in-
teractive workstations and large systems and clusters controlled by batch sched-
ulers. Since queue wait times on batch systems vary unpredictably, this mixture
poses a particular challenge to the APST scheduler. Any EOL tasks placed into
a batch queue may delay dependent tasks if the queue wait is long. On the other
hand, rescheduling such tasks to interactive resources and submitting different
ones in their place would mean losing our place in the queue.

To provide the APST scheduler with flexibility in allocating tasks to batch
resources, we submit agent processes instead of individual EOL tasks to the batch
scheduler. When the batch job runs, these agents contact the APST daemon to
let it know that the resource is available for use. This contact is normally made
through a proxy running on the submission node of the batch system (i.e., the
“front-end”), to accommodate systems where batch nodes cannot contact outside
machines directly. We call this architecture RASH (Reverse Access SHell) and it
is depicted in Fig. 2. When notified that batch resources are available, the APST
scheduler recomputes its EOL task schedule and begins sending commands to
the agents, directing them to run particular tasks. APST continues to give the

Grid Workflow Software for a High-Throughput Proteome 73

 APST Daemon

 RASH RASH RASH RASH

 RASH

 RASH

 front−end

 agent agent agent agent

 proxy

 client

Fig. 2. RASH: software architecture supporting the use of batch-scheduled resources
in APST

agents work as long as the batch resources are available and there are unassigned
tasks to do. When the batch job times out, the APST scheduler detects the loss
of the resources and computes a new EOL task schedule without the batch nodes.

Earlier versions of APST did not support batch systems. However, they did
allow the user to add new computing resources during the run and provided
fault recovery mechanisms under which the APST scheduler would recompute
its task schedule when a computing resource failed. The combination of these two
features allowed us to add support for batch systems with very little modification
to the APST scheduler. Computing resources that become available when a batch
job begins running are treated identically to those added by the user. When a
batch job times out, the loss of resources is handled by the existing fault recovery
mechanisms.

In the present implementation, the APST user determines the parameters
of batch submissions–the number of processors, the amount of time, etc. When
a batch job times out, APST submits a new one with the same parameters.
In future work we plan to investigate how we might anticipate job time-out to
minimize the delay between one batch job finishing and the next one starting.
We also plan to investigate whether APST can efficiently take over responsibility
for determining the parameters of batch submissions.

Due to the lack of a global Grid queue for job submission, several authors
have explored ways in which applications can take advantage of multiple batch-
scheduled system. For instance, the work in [35] explores the notions of submit-
ting multiple requests for the same job to different batch systems and then using

74 A. Birnbaum et al.

only the request that acquires processors first. Our work bears a fundamental
difference with such approaches as we allow for “late binding” of computation
to processors: when a request is submitted to a batch queue one does not know
which application tasks will be executed on the request processors once they are
acquired. This is not a new concept and the Condor “Glide-In” [16] functionality
makes this possible in the specific context of Condor and Globus. Most related
to our work is the “placeholder scheduling” work [32], which we contemplated
reusing within APST. However, one key difference in our work is that we run an
agent on each acquired processor. This is necessary to assign different sequen-
tial application tasks to individual processors (as opposed to, say, a single MPI
job to all processors in a batch), and to assign multiple sequential application
tasks to a processor throughout time while the processor is available. These two
capabilities are key for the EOL application as many of the tasks are sequential.

2.4 APST Usage

In a typical APST usage scenario, a user first assembles a large XML file that
describes all of the tasks that must be run, and a set of resources available for
executing these tasks. The user then uses the APST command-line client to
send this XML to the APST daemon, which proceeds to automatically match
up tasks with resources. At that point the daemon manages all of the logistics of
application deployment, providing feedback to the user about task completions
and generated output files. While this provides a solution for a large portion
of challenge (iii) in Section 2.1, it is not sufficient. In the case of EOL, where
we typically have millions of tasks running over a period of months, the above
scenario would prove to be prohibitive. The situation clearly required the devel-
opment of a system to manage the overall long-term state of our calculations,
automatically generating XML and adding it to APST, and automatically mon-
itoring APST to determine when tasks have been completed in order to store
their output in appropriate databases and archives. In other terms, we need a
higher level of logistics management that builds on APST and is closer to the
application. APST cannot provide such functionality itself as it is designed to
be completely application generic. This was our main motivation for developing
and higher-level tool, BWMS, described in the next section.

3 Bioinformatics Workflow Management System

The EOL application is a “workflow” application, in the sense that it consists
of many software components that have data dependencies (i.e. it is a directed
acyclic graph). While APST manages data dependencies automatically, it does
not provide any higher-level workflow management capabilities; for example, it
does not address application-level abstractions such as the status of genomes or
proteins. The creation of flexible systems for the management of complex com-
putational workflows is an important focus in research and in standardization
efforts. In the specific context of Grid computing, a Grid Workflow management

Grid Workflow Software for a High-Throughput Proteome 75

Oracle
Database

 User
Interface

 BWMS

APST Java API

 APST Daemon

Grid Resources

User

SQL

XML

Fig. 3. Bioinformatics Workflow Management System Software Architecture

architecture is currently being developed as part of the Global Grid Forum [29]
to define standards that address workflow problems particular to Grid appli-
cations. However, no implementation of Grid workflow standards were avail-
able at the time of our research. Consequently we chose instead to develop
a highly focused workflow system, called the Bioinformatics Workflow Man-
agement System (BWMS), that builds on top of APST’s distributed resource
management capabilities. This integration of BWMS and APST is depicted in
Fig. 3.

The overall purpose of the BWMS is to bundle groups of tasks into XML
documents for execution by APST. In other words, BWMS translates domain-
specific information regarding genomes and proteins, into generic descriptions
of tasks that APST is able to execute on remote resources. The overall system
state is stored in a relational database, which includes all of the protein sequence
information, as well as bookkeeping data that indicates which genomes and pro-
teins have been submitted, are in process, or have been completed by APST.
An important advantage of this architecture is that multiple user interfaces may
be developed that depend only on the table structure of the database, without
having to define or implement wire protocols by which a user interface would
have to glean information from the BWMS.

We implemented the BWMS in approximately 5000 lines of Java. Communi-
cation with the APST daemon is accomplished using a Java client class included

76 A. Birnbaum et al.

in the free distribution of APST [4]. We will comment on initial performance
results in the following section.

4 Results

We executed a major test of our integrated system at the Supercomputing Con-
ference (SC’03) in November, 2003. We ran the workflow system continuously
for approximately 4 days during SC’03, and provided annotation for 36,104 pro-
teins from more than 70 proteomes, with more than 54,000 tasks completed. The
computational resources that we used, and the number of tasks completed by
each, are depicted in Table 1.

Note the BWMS is able to tolerate considerable heterogeneity in accessing
resources. The system used a wide variety of methods to access these machines,
which ran a variety of batch schedulers; this heterogeneity was made entirely
transparent by APST. The number of CPU’s and the wallclock time used on the
batch systems indicates the number of CPU’s and amount of wallclock time re-
quested in each submission of agents (see Section 2.3). We do not show measures
of actual CPU cycles delivered, as many of the resources we used had heteroge-
neous architectures, thus making comparison difficult. For systems without any
batch scheduler (e.g. the various workstations), we achieved a relatively higher
throughput per CPU, since we did not have to pay the overhead of waiting
through batch queues.

A notable feature of this data is the outstanding performance delivered by
the BII Viper Cluster, and the dedicated EOL cluster. This performance is due
to the EOL application’s exclusive access to these resources during SC’03. Also
notable is the relatively poorer utilization of several of the resources, particu-
larly the SDSC Teragrid cluster, and the Titech condor pool. In fact, the SDSC
cluster delivered performance comparable to the NCSA cluster, but we often
had to manually disable APST’s submission to the SDSC cluster to allow other

Table 1. Results for Random Grid/Application pairs

Host CPU’s Walltime (min) OS Scheduler Access CPU Hrs
BII Viper Cluster 58 120 Linux PBS Globus 6255.3
EOL Cluster 36 120 Linux PBS local 3831.3
NCSA Teragrid 32 60 Linux PBS Globus 1380.8
UMich Morpheus 16 10 Linux PBS SSH 752.1
SDSC Teragrid 32 60 Linux PBS Globus 472.2
NBCR Workstation 4 - Sun none SSH 357.5
Titech Condor pool 32 120 Linux Condor SSH 340.6
Monash U. 2 - Linux none SSH 152.9
UFCG workstation 1 - Linux none SSH 69.7
BeSC workstation 2 - Linux none SSH 58.1

Total 215 - - - - 13670.5

Grid Workflow Software for a High-Throughput Proteome 77

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4

Hours

C
um

m
ul

at
iv

e
nu

m
be

r
of

 ta
sk

 c
om

pl
et

io
ns

Fig. 4. Cumulative task completions throughout time

applications to access this resource during the conference. For resources with
batch schedulers, the amount of wallclock time per RASH request was also a
significant factor. As described in Section 2.3, when a request expires, running
tasks are abandoned; for shorter requests, a greater fraction of the overall CPU
time is lost in this way. Scheduling algorithms for managing the size of these re-
quests, and for allocating tasks to these resources with a limited time duration,
are both subjects that merit further study.

The aggregate performance of these resources is depicted in Fig. 4, which
shows the cumulative number of tasks completed. While this graph does not
exhibit any unexpected behavior, it makes it possible to quantify the throughput
of the system in steady-state in terms of task completions: approximately 750
tasks per hour.

The most noteworthy feature of the curve is the plateau effect at the end of
the graph. This is due to two factors. First, as we stopped the experiment at
the end of the SC’03 conference, we suffered from the common “wait for the last
task” syndrome. In the case of EOL this is insignificant as the goal is to achieve
high throughput for an application that runs over a long period of time (e.g.,
weeks). Second, after inspecting the APST logs, we found that the slow down
is also due to the increasing workload associated with file transfers. As the jobs
completed the APST daemon spent an ever-greater fraction of its time fetching
output files. In the long run, file transfer activities may delay the launching of
new tasks, as computational resources can not receive needed input files until
other file transfers were completed. Since this experiment, we have optimized file

78 A. Birnbaum et al.

transfers. To reduce the overhead associated with establishing a connection and
negotiating security protocols, we now batch multiple files with the UNIX tar
command, thus decreasing the number of separate transfers.

Another thing we learned during this experiment is that our implementation
of the RASH architecture presented in section 2.3 had a scalability problem. In-
deed, we used an earlier version in which there was one process on the APST dae-
mon host corresponding to each RASH agent process, which could have totalled
to as many as 215 processes (and many more for larger platforms). In our new
design, there is only one RASH client process per front-end node, as explained
in Section 2.3. We expect this change to lead to significant improvements in per-
formance and scalability of the APST daemon, and thus of the system overall.

In summary, our integration of EOL with APST and BWMS proved to be func-
tional, able to harness a wide range of Grid resources including both batch and
interactive systems, and our experimental runs during the SC’03 conference al-
lowed us to identify and address two scalability bottlenecks in the system. We will
report on new experiments with this improved implementation in a future paper.

5 Conclusion

In this paper we have presented an integrated software pipeline for deploying the
Encyclopedia of Life (EOL) application on large-scale Grid platforms. In our ar-
chitecture, the Biology Workflow Management System (BWMS) makes use of the
AppLeS Parameter Sweep Template (APST) in order to manage the execution of
the EOL workflow at a the application level. The value of APST is that it provides
a simple abstraction layer that it makes the logistics of application deployment
and the heterogeneity of Grid resources transparent. In addition, APST uses in-
telligent scheduling strategies to improve performance (e.g., by improving locality,
reducing data movements, avoiding loaded resources). We realized a prototype im-
plementation of this integration and reported on on its performance for large runs
(more than 54,000 application tasks) over a large-scale Grid platform (10 institu-
tions) during the SC’03 conference. Based on this early experience we identified
scalability bottleneck in our system, which we have addressed in the latest version.
Our future work is along two fronts. First, we will improve our scheduling and
resource management strategies. Indeed, APST’s scheduling heuristics were ini-
tially developed for completely task parallel applications, and not workflows. For
instance, an extremely promising lead is the recent work in [6], which provides new
optimality results for the scheduling of multiple workflows in a high-throughput
scenario. Second, we will integrate our work with the emerging Grid/Web service
architecture and adopt workflow standards as they become available.

Acknowledgements

The authors wish to thank Greg Bruno, Mason Katz, Philip Papadopoulos,
Robert W. Byrnes, Greg B. Quinn at SDSC, Atif Shabab, Danny Chuon, Boon

Grid Workflow Software for a High-Throughput Proteome 79

Tuck, Stephen Wong, Yong How Choong, Larry Ang at BII, Toyotaro Suzumura,
Kouji Tanaka, Satoshi Matsuoka at TiTech, Colin Enticott, David Abramson at
University of Monash, Australia, David R. Simpson, Terence Harmer at Belfast
e-science center, UK, Cliane Cristina de Araujo, Zane Cirne at UFCG, Brazil
for making the demo at SC’03 a success.

References

1. D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling
with Nimrod/G: Killer Application for the Global Grid? In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS), Cancun,
Mexico, pages 520–528, May 2000.

2. S. Agrawal, J. Dongarra, K. Seymour, and S. Vadhiyar. Grid Computing: Making
The Global Infrastructure a Reality, chapter NetSolve: Past, Present, and Future -
A Look at a Grid Enabled Server. John Wiley, 2003. Hey, A. and Berman, F. and
Fox, G., editors.

3. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.
GridFTP: Protocol Extension to FTP for the Grid, March 2001. Grid Forum
Internet-Draft.

4. APST Homepage. http://grail.sdsc.edu/projects/apst.
5. C. Baru, R. A. Rajasekar, and M. Wan. The SDSC Storage Resource Broker. In

Proceedings of the CASCON’98 Conference, November 1998.
6. O. Beaumont, A. Legrand, and Y. Robert. Static scheduling strategies for hetero-

geneous systems. Technical Report LIP RR-2002-29, École Normale Supérieure,
Laboratoire d’Informatique du Parallélisme, July 2002.

7. F. Berman, G. Fox, and T. Hey, editors. Grid Computing: Making the Global
Infrastructure a Reality. Wiley PUblishers, Inc., 2003.

8. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and
D. Zagorodnov. Adaptive Computing on the Grid Using AppLeS. IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 14(4):369–382, 2003.

9. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Research,
28:235–242, 2000.

10. M. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J. Saltz. Dis-
tributed Processing of Very Large Datasets with DataCutter. Parallel Computing,
27(11):1457–1478, October 2001.

11. T.D. Braun, D. Hensgen, R. F. Freund, H.J. Siegel, N. Beck, L.L. Boloni, M. Ma-
heswaran, A. Reuther, J.P. Robertson, M.D. Theys, and B. Yao. A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. Journal of Parallel and Distributed Computing,
61(6):810–837, 2001.

12. R. Buyya, M. Murshed, and D. Abramson. A Deadline and Budget Constrained
Cost-Time Optimization Algorithm for Scheduling Task Farming Applications on
Global Grids. In Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, Las Vegas, June 2002.

13. H. Casanova, T. Bartol, J. Stiles, and F. Berman. Distributing MCell Simulations
on the Grid. International Journal of High Performance Computing Applications
(IJHPCA), 14(3), 2001.

80 A. Birnbaum et al.

14. H. Casanova and F. Berman. Parameter Sweeps on the Grid with APST. In
F. Berman, G. Fox, and T. Hey, editors, Grid Computing: Making the Global In-
frastructure a Reality. Wiley Publisher, Inc., 2002.

15. H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In Proceedings of the 9th
Heterogeneous Computing Workshop (HCW’00), Cancun, Mexico, pages 349–363,
May 2000.

16. Condor Version 6.2.2 Manual. http://www.cs.wisc.edu/condor/manual/v6.2/.
17. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-

vices for Distributed Resource Sharing. In Proceedings of the 10th IEEE Symposium
on High-Performance Distributed Computing (HPDC-10), August 2001.

18. H. Dail, D. Berman, and H. Casanova. A Decoupled Scheduling Approach for
Grid Application Development Environments. Journal of Parallel and Distributed
Computing, 63(5):505–524, 2003.

19. Elagi. http://grail.sdsc.edu/projects/elagi/.
20. EOL Homepage. http://eol.sdsc.edu/.
21. I. Foster and C. Kesselman. Globus: A Toolkit-Based Grid Architecture. In I. Fos-

ter and C. Kesselman, editors, The Grid: Blueprint for a New Computing Infras-
tructure, pages 259–278. Morgan Kaufmann, 1999.

22. I. Foster and C. Kesselman, editors. Grid 2: Blueprint for a New Computing
Infrastructure. M. Kaufmann PUblichers, Inc., second edition, 2003.

23. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications, 15(3), 2001.

24. Ganglia. http://ganglia.sourceforge.net.
25. Joint Center for Structural Genomics. http://www.jcsg.org.
26. Y. Kwok and I. Ahmad. Benchmarking and Comparison of Task Graph Scheduling

Algorithms. Journal of Parallel and Distributed Computing, 59(3):318–422, 1999.
27. W.W. Li, R.W. Byrnes, J. Hayes, A. Birnbaum, V.M. Reyes, A. Shabab, C. Mosley,

D. Perkurowsky, G. Quinn, I. Shindyalov, H. Casanova, L. Ang, F. Berman, P.W.
Arzberger, M. Miller, and P.E. Bourne. The Encyclopedia of Life Project: Grid
Software and Deployment. New Generation Computing, 2004. in press.

28. W.W. Li, G.B. Quinn, N.N. Alexandrov, P.E. Bourne, and I.N. Shindyalov. A com-
parative proteomics resource: proteins of Arabidopsis thaliana. Genome Biology,
4(8):R51, 2003.

29. D. Marinescu. A Grid Workflow Management Architecture, August 2002. Global
Grid Forum White Paper.

30. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/.
31. Open grid service architecture. http://www.globus.org/ogsa/.
32. C. Pinchak, P. Lu, and M. Goldenberg. Practical Heterogeneous Placeholder

Scheduling in Overlay Metacomputers: Early Experiences. In D.G. Feitelson,
L. Rudolph, and U. Schwiegelshohn, editors, Job Scheduling Strategies for Par-
allel Processing, Lecture Notes in Computer Science, volume 2537, pages 202–225.
Springer Verlag, 2002.

33. Pacific Rim Applications and Grid Middleware Assembly.
http://www.pragma-grid.net/.

34. O. Sievert and H. Casanova. Policies for Swapping MPI Processes. In Proceedings
of the 12th IEEE Symposium on High Performance and Distributed Computing
(HPDC-12), Seattle, June 2003.

Grid Workflow Software for a High-Throughput Proteome 81

35. V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan. Distributed Job
Scheduling on Computational Grids using Multiple Simultaneous Requests. In
Proceedings of the 11th IEEE Symposium on High Performance and Distributed
Computing (HPDC-11), Edinburgh, 2002.

36. D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman,
A.J.G. Hey, and G. Fox, editors, Grid Computing: Making The Global Infrastruc-
ture a Reality. John Wiley, 2003.

37. S. Vadhiyar and J. Dongarra. A Performance Oriented Migration Framework for
The Grid. In Proceedings of the 3rd IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), Tokyo, May 2003.

38. R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation
Computer Systems, 15(5-6):757–768, 1999.

39. A. Yarkhan and J. Dongarra. Experiments with Scheduling Using Simulated An-
nealing in a Grid Environment. In Proceedings of the 3rd International Workshop
on Grid Computing, Baltimore, 2002.

Genome-Wide Functional Annotation
Environment for Thermus thermophilus in

OBIGrid

Akinobu Fukuzaki1,2, Takeshi Nagashima1, Kaori Ide1,2, Fumikazu Konishi1,2,
Mariko Hatakeyama1,2, Shigeyuki Yokoyama2,3,4, Seiki Kuramitsu2,5,

and Akihiko Konagaya1,2

1 Bioinformatics G., RIKEN GSC, 1-7-22,
Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan

{akki, nagashima, kaoide, fumikazu, marikoh, konagaya}@gsc.riken.jp
2 RIKEN Harima Inst., 1-1-1, Kouto,
Mikazuki-cho, Sayo-gun, Hyogo, Japan

3 Protein Res. G., RIKEN GSC, 1-7-22,
Suehiro, Tsurumi, Yokohama, Kanagawa, Japan

yokoyama@gsc.riken.jp
4 Grad. Sch. of Sci., Univ. of Tokyo.,

7-3-1, Hongoh, Bunkyou-ku, Tokyo, Japan
5 Grad. Sch. of Sci., Osaka Univ.,

1-3, Machikaneyama-cho, Toyonaka, Osaka, Japan
kuramitu@bio.sci.osaka-u.ac.jp

Abstract. We developed OBITco (Open BioInfomatics Thermus ther-
mophilus Cyber Outlet) for gene annotation of T. thermophilus HB8
strain. To provide system services for numbers of researchers in the
project, we adopted Web based technology and high-level user authen-
tication system with three functions which are rollback function, hier-
arch representative function and easy-and-systematic annotation. The
robust and secure network connection protects the confidential infor-
mation within the project, thus, researchers can easily access real-time
information on DNA sequences, ORF annotations or homology search
results. T. thermophilus HB8 possesses 2,195 ORFs, 1156 Intergenic re-
gions, 47 putative tRNA regions, and 6 rRNA regions. BLAST against
nr/nt database and InterProScan for all ORFs were used to get ho-
mology hit records. The system provides an ORF viewer to show basic
information of ORFs and database homology hit records. Researchers
can update annotation information of ORF by simple operation, and
then new annotation is applied to central database in real-time. Latest
information can be utilized for lab experiments such as functional anal-
ysis, network analysis and structural analysis. The system can be also
utilized as data storage/exchange place for the researchers for everyday
experiments.

pp. 82–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

Genome-Wide Functional Annotation Environment 83

1 Introduction

T. thermophilus is a gram-negative, aerobic thermophilic eubacterium grew at
optimum temperatures of 65-85 ◦C[1]. Addition to thermostable enzyme pro-
ductions T. thermophilus HB8 has been particularly acknowledged as a valuable
model organism for a systematical study of protein structures and functions in
Structurome project[2]. 1.8 Mb genome of T. thermophilus has sequenced, and
it is estimated to encode ca. 2000 proteins. This small genome size and excellent
crystallizability of the protein are most suitable to characterize a whole organ-
ism as a single system operated by genes and proteins. At present, more than 20
organizations are involved in the studies of protein structure elucidation, pro-
teome, microarray and metabolome analysis in the Structurome project. For this
purpose, construction of a common secured working environment is necessary to
centralize and analyze vast datasets for the project researchers located in various
institutions. Based on this policy, we developed OBITco: Open BioInformatics
T. thermophilus Cyber Outlet for genome annotation and functional analysis of
system wide study of T. thermophilus. OBITco enables the researchers broad
genome annotation with gene prediction, structure elucidation, metabolic path-
way analysis, gene expression analysis and network analysis.

2 System Architecture

The system architecture of OBITco aims at information sharing and genome
wide functional annotation for the project. The gene annotation is done by se-
quence homology search of DNA and proteins. Since more than one researcher
are assigned for the annotation, all of the opinions do not always match. And, in-
formation should be always updated according to the public database update. To
solve such problems, OBITco has a rollback function for annotation information
and a hierarchical representative function.

2.1 Rollback Function

The rollback function is a function to return to the past information, in other
words, a function to record a tracking. We can reconsider the divisive opinion
from the past annotation records. Such a function bestows diversified views and
makes it possible to record an intellectual new idea. (Fig. 1)

2.2 Hierarchical Representative Function

A hierarchical representative function allows the expansion of the information
for annotation with an inheritance of structure by an object-oriented approach.
The annotation system must gather the various information such as a genome
sequence, ORF information and information on the homologs. So there is a need
for high-speed bioinformatics analysis to generate the data from such informa-
tion. This system store information which can normalize genome sequence and

84 A. Fukuzaki et al.

Fig. 1. Screen shot of the rollback function. The past annotation records are iterate in
counter chronological order

Fig. 2. A screen shot of the hierarchical representative function. One hierarchical object
contains variety annotation data. The view of the annotation object is automatically
dominated by hierarchical representative function. For example, homology hit data is
shown with a graphical alignment of homology

ORF position into relational database (RDB). And the annotation system keeps
results of bioinformatics analysis and annotation histories into a dictionary struc-
ture object, and stores the object into the RDB tables. Therefore, the annotation
can be done with high flexibility and high speed. (Fig. 2)

Genome-Wide Functional Annotation Environment 85

2.3 Easy and Systematic Annotation

Many annotation data can be given to the regions by adopting thehierarchical
representative function. However, on the other hand, the wide variety of infor-
mation handling tends to cause a nonuniformity in the annotation quality and to
force users heavy operational loads when one handles many annotation regions
at the same time (Fig. 3(A)). To reduce number of operational loads and to fa-
cilitate easy and systematic procedures, a concept of Workflow is introduced and
implemented into the annotation system. The Workflow bestows a series of sim-
ple operation interface that focused on individual annotation themes (Fig. 3(B)).
It has three phases: region searching phase, region annotation phase and consum-

Fig. 3. When users make annotation with general annotation system, they would be
face to too much operational load. Choosing an affirmative data field to enter new
information would cause miss-input of data, or discriminating of an applicable infor-
mation to refer would slow the progress of annotation. Thus, their output would have a
fluctuation of annotation quality and the lead-time for annotation would be longer.(A)
Workflow provides a well-regulated set of user interfaces that give finite information to
users, thus, the system realizes a reducing of operation load and regulation of annota-
tion quality.(B)

mating phase. Region searching phase bestows user interface to search genome
regions by keyword, genome locus or its homolog entries, then put them to a
region list. At region annotation phase, annotation user interface repeats over

86 A. Fukuzaki et al.

all regions in the region list. Then finally, consummating phase bestows a ta-
ble of summary of whole annotations for this task. For example, on annotation
for PDB information, T. thermophilus HB8 putative ORFs are blasted against
known PDB entries to append an annotation information for protein structures.
First phase of the Workflow, researcher searches regions that have over 90% se-

(A) (B)

(C)

Fig. 4. A screen shot of the PDB annotation. (A)Workflow List shows flow of anno-
tation task, they are Region Search as region searching phase, PDB Annotation as
region annotation phase and Report as consummating phase. Region List shows a ta-
ble of region list which selected to annotate in this task. Region Search is graphical
user interface to search regions by keyword, sequence homology or type of homology
hit. This example shows the condition to find regions which have over 90% sequence
identity homolog. There are 965 homolog hits in this condition (B)PDB annotation is
to append the PDB ID and its chain name, gene id, name and comment to the region.
One region could make several protain structure, this example shows that the region
has 4 structures 1H4Q, 1H4S, 1H4T and 1HC7 (C)At consummating phase, all region
ID and its annotated PDB are shown as table

Genome-Wide Functional Annotation Environment 87

quence identity in PDB entries by RevHomolog search interface, then append it
to the region list (Fig. 4(A)). Second phase of the Workflow, annotation interface
shows homologies and current annotations for the first region of the region list.
A researcher refers these information to select the best PDB information. The
annotation interface that specialized to PDB annotation helps the researcher to
register annotation data correctly. When the researcher confirmed a registora-
tion of new annotation, she/he goes to next region (Fig. 4(B)). A user interface
which has optimum and simple operation allows the researcher to annotate ad-
equately and speedily. Finally, the report interface shows the latest annotation
list for all regions in the region list, so researcher can confirm annotations at a
glance (Fig. 4(C)). Thus, Workflow realizes the easy and systematic annotation.

3 Implementation

We chose Python (http://www.python.org), an object oriented language, for
the system development. Python is a highlevel, dynamic, general purpose pro-
gramming language that can be applied to different problems in bioinformatics
study. And PostgreSQL database is also employed as a backend subsystem for
data access. PostgreSQL is an opensource, a descendant of the original Berke-
ley code. PostgreSQL supports SQL92 and SQL99 and offers various modern
features (complex queries, foreign keys, triggers, views, transactional integrity,
multiversion and concurrency control). All these systems are constructed in the
OBIGrid environment. The annotation system is composed of several API sets
which are described with Python and provides service for the user by CGI. Be-
fore to develop OBITco, the genome database software Ensembl[3] has tested.
Ensembl has implemented with four layer architecture which are viewer, biolog-
ically meaningful objects, database connectivity objects and data sources. This
architecture makes it easier to evolve the schema to address new data types.
However, T. thermophilus has circular chromosomes, so several modifications

Fig. 5. OBITco three layer architecture. The model layer has Data access API which
contains User Object to control user access, Annotation Object to handle the annota-
tion information, and Region Object is representative for regions to annotate. Control
layer is implements as Workflow API. The view layer has HTML Rendering Object to
make graphical user interface within View Composition API

88 A. Fukuzaki et al.

Table 1. OBITco implemented classes

View

Component.py Component root class
Component SubComponentWrapper.py Make SubComponent class as Component
Component ToolGeneralAnnotation.py For annotation
Component ToolRegionView.py For region view
Component ToolReportTable.py For report table
Component ToolSearchRegion.py For region search
SubComponent AnnobjectAnnotation.py For annotation of annotation object
SubComponent AnnobjectSynonymGo.py For synonym/go term of annotation object
SubComponent AnnobjectSynonymPDB.py For synonym/pdb of annotation object
SubComponent AnnobjectSynonymProject.py For synonym/project of annotation object
SubComponent BasicInformation.py Show basic information of the region
SubComponent CommonObject.py Show table view of general object
SubComponent Entries.py Table view for entries such as search result
SubComponent FileUpload.py User interface to handle file uploading
SubComponent GeneralGenomeBrowse.py View of genome wide browse
SubComponent GeneralHomologs.py Table of homologies
SubComponent GeneralRegionFasta.py To show FASTA format data
SubComponent GeneralRegionView.py To show sequence level region view
SubComponent GeneralSearch.py Root class for searching interface
SubComponent SearchAdvance.py For advanced keyword search
SubComponent SearchBlast.py For blast base search
SubComponent SearchFile.py To search regions in uploaded file
SubComponent SearchRevHomolog.py To search regions in homolog condition
SubComponent SearchSimple.py Simple keyword search
SubComponent Tab.py To make tab sub component
PObject.py Base classes to compose user interface parts

Control

WorkFlow.py WorkFlow framework
Viewer.py WorkFlow framework but one step operation
SessionParams.py CGI parametors and session management

Model

DataConnection.py API for data access

etc

DataFetch.py To fetch the genbank entry data
OBIShare.py Shared sub routines
ObjectDict.py General object operation
workflow001.py CGI script for functional annotation
workflow002.py CGI script for go term annotation
workflow003.py CGI script for PDB annotation
workflow004.py CGI script for project ID annotation
view.py CGI script for viewer

on source code was required. In addition, the data set of T. thermophilus was
not fixed yet, therefore it is necessary to be annotated by many researchers in
the project. The system architecture and API sets are designed to capsulate
the data access and to be task flow oriented system. The API sets are cate-
gorized by its role into three layers, data access, view composition and work
flow. (Fig. 5) Table 1 shows implemented classes on OBITco. View Compo-
sition API is coded as 26 python script files. There are three amass of files
Components, SubComponents and PObjects. A Component makes one opera-
tion in the Workflow as like a one web page. Component class is directly in-
teracting with Workflow API to complete the chain of operations on the an-
notation task. The Workflow requires the management of region list, the dom-
inating of operation flow and the handling of CGI parameters to the compo-
nent. A SubComponent makes more tangible parts of user interface. SubCom-
ponent AnnobjectAnnotation bestows a composition of a user interface and Data
access API call to update the functional annotation of the region. SubCompo-
nent AnnobjectSynonymGo, SubComponent AnnobjectSynonymPDB and Sub-
Component AnnobjectSynonymProject bestow a composition of user interface

Genome-Wide Functional Annotation Environment 89

and data access to add and delete synonym terms for GO term, PDB and project
original region ID. SubComponent BasicInformation bestows fixed format table
of basic information for the region such as region ID, genome locus, functional
annotation and synonyms. SubComponent CommonObject is for a basis class
for object view. SubComponent Entries bestows Entries classes to compose the
table view for list of search results, homolog hits or so. Entries class contains
inner operation for entries object which handles the list of result or homolog
entries and its property to control paging or sorting of the list. Entries class com-
pletely include the method of composition and operation for entries object, thus,
Component and SubComponent don’t need to take care about entries inside. Be-
cause, the interaction between Entries class and Component/SubComponent is
defined by Workflow. SubComponent FileUpload bestows a framework to accept
tab separated value type file uploading. File uploading corrects a list of region
IDs from the file instead of searching. This mechanism allows the researcher
to make region list from the file which exported by other analysis tools. Sub-
Component GeneralGenomeBrowse bestows the genome browse interface which
shows regions loci on entire genome. SubComponent GeneralHomologs is a class
to show homologs which hit to the region. This class extends the Entries class
to realizes graphical alignment view. SubComponent GeneralRegionFasta shows
FASTA format sequence of the region for DNA sequence and Amino Acid se-
quence. SubComponent GeneralRegionView bestows sequence level view of the
region. The researcher needs sequences information on the region or its UTRs
to confirm its transcription or translation. SubComponent GeneralSearch is for
basis class of SubComponent Search series to bestows region searching inter-
face. SubComponent Tab bestows the view which contains a row of tabs that
gives the appearance of folder tabs above the content area. PObject bestows
base classes to compose user interface parts such as text field, button, check
box, radio buttion and or so. Workflow API is coded as 3 python script files.
Workflow is a Workflow framework class to control whole task flow of the an-
notation. Viewer is a Workflow framework class but without workflow control.
OBITco uses Viewer class to realizes general information viewer. SessionParams
is a management center of CGI session parameters. Data access API is coded by a
python script DataConnection. DataConnection is a class which includes the set
of data access method. Any data access procedure pass through this class, thus,
View and Control layer is completely separated from back end data base system.
OBITco genome wide annotation system is developed by these internal API sets.

4 Summary

The breakdown of current annotations is shown on table 2. The annotation
means functional annotation’s update. The synonym means there were adding
or deleting of synonym entry. The computational annotation is done before the
annotation by researcher. The researcher requires to make annotation only if
original annotation might be wrong or there are additional information, thus, a
number of annotation by researchers are getting small. Therefore, synonym/pdb

90 A. Fukuzaki et al.

Table 2. Latest annotation counts

annottion target count

annotation 25
synonym/gene 67
synonym/ec 46
synonym/go term 2
synonym/pdb 80
synonym/project 2097

Table 3. Aspect of OBITco registered user

organization sites users

Institute 2 39
University 7 13
Company 2 2
Org. 1 1

12 55

has no precedent computational annotation, so a number of annotation by re-
searcher for it has a larger count. OBITco current version which includes Work-
flow concept first time has been released at February, 2004. We have observed
users access and maintained for miner version up. Table 3 shows an aspect of reg-
istered user and its organization. Organizations are calculated by thier registered
e-mail address domain name. All of users were asked to agree with non discloser
contract for our database which includes non published materials. When the
materials are ready to publish, OBITco will be open to public. No any registra-
tion would be required. But, there are some problem to be public. We should
also consider about technical matters of public service. The very clear matter
is computational power. OBITco serves many services which based on database
and homology searching. These programs need a lot of cpu power and memory
spaces. So, we will use a grid technology to solve this problem. OBITco is a
framework utilized not only for genome annotation but also for candidate se-
lection for structure determination, function prediction of hypothetical proteins
based on the information such as protein structure and mRNA expression pro-
files. The function to handle these data would be available on the future release.

References

1. Borges, K.M. and Bergquist, P.L. (1993) Genomic restriction map of the extremely
thermophilic bacterium Thermus thermophilus HB8. J. Bacteriol., 175, 103–110.

2. Yokoyama, S., Hirota, H., Kigawa, T., Yabuki, T., Shirouzu, M., Terada, T., Ito,
Y., Matsuo, Y., Kuroda, Y., Nishimura, Y., Kyogoku, Y., Miki, K., Masui, R. and
Kuramitsu, S. (2000) Structural genomics projects in Japan. Nat. Struct. Biol. 7
Suppl:943–945.

Genome-Wide Functional Annotation Environment 91

3. T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J.
Cuff, V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L.
Huminiecki, A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mongin, R.
Pettett, M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. Smith,
W. Spooner, A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. Vastrik1 and
M. Clamp The Ensembl genome database project. (2002) Nucleic Acids Research
30: 38–41

4. Shibuya. T. and Rigoutsos, I. Dictionary-driven prokaryotic gene finding. (2002)
Nucleic Acids Res. 30, 2710–2725.

5. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic
local alignment search tool. J. Mol. Biol. 215, 403–410

6. Sonnhammer, E.L.L., von Heijne, G. and Krogh, A. (1998) A hidden Markov model
for predicting transmembrane helices in protein sequences. In Glasgow, J., Little-
john, T., Major, R., Lathrop, F., Sankoff, D. and Sensen, C. (eds), Proceedings of
the Sixth In-ternational Conference on Intelligent Systems for Molecular Biology.
AAAI Press, Menlo Park, CA, pp. 175–182.

7. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa M. (1999)
KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34.

8. Schomburg, I., Chang, A. and Schomburg, D. (2002) BRENDA, enzyme data and
metabolic information. Nucleic Acids Res. 30, 47–49.

9. Pearson, W.R., Wood, T., Zhang, Z. and Miller, W. (1997) Comparison of DNA
sequences with protein sequences. Genomics, 46, 24–36.

10. Hirokawa, T., Boon-Chieng, S. and Mitaku, S. (1998) SOSUI: classification and
secon-dary structure prediction system for membrane proteins. Bioinformatics, 14,
378–379.

11. Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birney, E., Biswas, M.,
Bucher, P., Cerutti, L., Corpet, F., Croning, M.D. et al. (2000) InterPro–an inte-
grated documentation resource for protein families, domains and functional sites.
Bioinformatics, 16, 1145–1150.

12. Zdobnov, E.M. and Apweiler, R. (2001) InterProScan–an integration platform for
the signature-recognition methods in InterPro. Bioinformatics, 17, 847–848.

13. Kimura, S., Hatakeyama, M., Konagaya, A., (2004) Inference of S-system Models
of Genetic Networks from Noisy Time-series Data. Chem-Bio Informatics Journal,
Vol.4, No.1.

Parallel Artificial Intelligence Hybrid Framework
for Protein Classification

Martin Chew Wooi Keat1, Rosni Abdullah2, and Rosalina Abdul Salam3

1 Faculty of Computer Science,
Universiti Sains Malaysia, Penang, Malaysia

martin.wooi.keat.chew@intel.com
2 Faculty of Computer Science,

Universiti Sains Malaysia, Penang, Malaysia
rosni@cs.usm.my

3 Faculty of Computer Science,
Universiti Sains Malaysia, Penang, Malaysia

rosalina@cs.usm.my

Abstract. Proteins are classified into families based on structural or
functional similarities. Artificial intelligence methods such as Hidden
Markov Models, Neural Networks and Fuzzy Logic have been used indi-
vidually in the field of bioinformatics for tasks such as protein classifica-
tion and microarray data analysis. We integrate these three methods into
a protein classification system for the purpose of drug target identifica-
tion. Through integration, the strengths of each method can be harnessed
as one, and their weaknesses compensated. Artificial intelligence meth-
ods are more flexible than traditional multiple alignment methods, and
hence, offers greater problem-solving potential.

1 Introduction

This concept paper relates to the field of protein classification, for the purpose
of structural and functional determination, in order to assist the process of drug
target discovery. Given an unlabeled protein sequence S and a known superfam-
ily F, we wish to determine whether or not S belongs to F. We refer to F as the
target class and the set of sequences not in F as the non-target class. In general,
a superfamily is a group of proteins that share similarities in structure and/or
function. If the unlabeled sequence S is detected to belong to F, then one can
infer the structure and function of S. This process is important in many aspects
of bioinformatics. For example, in drug discovery, if sequence S is obtained from
some disease X and it is determined that S belongs to the superfamily F, then
one may try a combination of existing drugs for F to treat the disease X. Our
approach combines three methods (Hidden Markov Model, Neural Network and
Fuzzy Logic) into a single integrated hybrid system. Furthermore, the core of
this system (the Neural Network portion) can be parallelized for better perfor-
mance, especially when very large data sizes have to be processed. We begin by

pp. 92–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

Parallel Artificial Intelligence Hybrid Framework for Protein Classification 93

reviewing prior work done using Hidden Markov Models, Neural Network and
Fuzzy Logic in the field of bioinformatics. The paper first looks at a review of
existing protein classification techniques and their limitations. It then proposes
a new classification method, based on a hybrid of existing techniques. The theo-
retical workings of the conceptual system are explained, its benefits anticipated,
and its contributions to the field of bioinformatics outlined. The paper ends with
a discussion on future work.

2 Literature Review

There are two types of protein sequence analysis tools: (a) alignment tools, and
(b) consensus identification tools. The purpose of alignment tools is to optimally
align two or more protein sequences. This serves to help identify sections of
similarities across the sequences presented to the tool. An alignment tool does
not make any decisions about the relatedness of the sequences, functional or
otherwise, other than highlighting sections of similarities among the sequences
presented to it. One example of an alignment tool is BLAST [1]. Tools such as
BLAST are based on conventional string processing algorithms, and makes use of
insertions of gaps, in order to derive a more optimal alignment. Other than string
processing algorithms, multiple alignment tools based on other techniques such
as Genetic Algorithms have also been developed. An example of this is SAGA
(Sequence Alignment by Genetic Algorithm) [2]. A major drawback of such
multiple alignment tools is the arbitrary scoring or fitness function employed
to rank the optimality of a particular alignment. Furthermore, when a very
large number of sequences are processed, the resulting multiple alignment could
potentially be rather taxing for the human eye to interpret. Hence, multiple
alignment tools may not be very suitable to be used to determine the relatedness
of an unknown sequence with respect to a large set of sequences.

Consensus identification tools are used to determine the relatedness of a given
sequence, with respect to a particular cluster of sequences. First, the cluster
has to be abstracted into a model or a representation. Once this is done, an
unknown sequence is compared against the model/representation, in order to
determine how well the fit is. An unknown sequence may be compared to a
range of models/representations, in order to ascertain the best fit. A commonly
used modeling/representation technique is Hidden Markov Model [3]. A Hidden
Markov Model is built to represent protein motifs (recurrent substring patterns
in a protein sequence string), rather than the entire protein sequence. Related
proteins normally share similar, or near-similar motifs. Hidden Markov Models
are able to cope with noises in the motif patterns with the use of insert or
delete states. As a result of this, Hidden Markov Models are able to handle near-
similarities very well. When an unknown sequence is submitted to the Hidden
Markov Model, the model is able to return a probability value, indicating the
consensus of the unknown sequence, with respect to the cluster of sequences the
model represents. A major drawback of Hidden Markov Models is that, if the
relationship among the sequences are not explicit (or near explicit), we would

94 M.C. Wooi Keat, R. Abdullah, and R. Abdul Salam

not be able to construct an accurate model. Hence, Hidden Markov Models are
suitable for coping with explicit, or near explicit (i.e. noisy) similarities, but not
suitable for implicit similarities.

To cope with implicit similarities, neural networks are used [4]. A sequence
is transformed into a set of input values, based on a particular encoding scheme
(e.g. 2-gram encoding scheme which counts the frequency of unique character
pairs in the protein sequence). These input values are then fed into a neural
network. A typical usage model requires a network to be trained on a collec-
tion of data pre-determined to be of similar functionality. Once the properties
of the collection have been abstracted by the network, it is ready to be used in
a predictive mode. An unknown sequence is encoded using the same encoding
scheme that the network was trained on, and then fed into the network. A pos-
itive output would indicate that the unknown sequence is in consensus with the
collection. The drawback of encoding schemes, such as 2-gram encoding, is that
local similarities (e.g. motif information) could be lost during the transformation.
Regular expression based functions has been used to detect local similarities and
return a real value, to be used as a bias input to the neural network. However,
such an approach still relies on arbitrary score assignments, and could result in
a potentially misleading bias.

Hidden Markov Models and neural networks have been combined before into
a hybrid to analyze DNA sequences. One example searches for potential TATA-
boxes in a DNA sequence [5]. A TATA-box is a sequence rich in adenine (A) and
thymine (T), located upstream of a gene. The TATA-box acts as a promoter.
A promoter is a DNA sequence that enables a gene to be transcribed. The pro-
moter is recognized by RNA, which then initiates transcription (i.e. generation
of protein). TATA-boxes vary in structure. To detect potential TATA-boxes,
hidden Markov models are used to abstract known TATA-boxes found along a
particular DNA sequence. One model per box. A neural network is then used to
abstract the dependencies across the models. The outputs of the hidden Markov
models are used as the inputs into the neural network. This hybrid is then used
to analyze DNA sequences to detect potential TATA-boxes. The presence of
TATA-boxes indicates the presence of genes in the DNA sequence.

Differing from the three categories of applications mentioned above, is a
fourth category consisting of applications which uses Fuzzy Logic to abstract
microarray data for prediction purposes [6]. Microarrays are genes inlaid on a
piece of silicon, and stained to highlight the presence of selected genes. These
genes govern the production of proteins. A sequence of microarrays, illustrating
gene expression over a period of time, is abstracted using Fuzzy Logic. Once the
knowledge base is built, the system is then used to anticipate which proteins
might be produced, based on incomplete gene expression information.

We can derive numerous decision matrixes from microarray observations such
as the example in Figure 1. From these decision matrixes, when we are presented
with a situation where we only know about the quantity of a limited number of
elements (A & B only for example), we would be able to extrapolate additional
information about other elements (such as the quantity of element C).

Parallel Artificial Intelligence Hybrid Framework for Protein Classification 95

HI

MED

LO

HI

C is MED

C is LO

C is Hi

MED

C is HI

C is LO

C is HI

LO

C is HI

C is LO

C is Lo

if B is

if
A

 is

Fig. 1. Decision matrix derived from knowledge base

We propose a hybrid protein classification and consensus identification sys-
tem, which will combine the best features of some of the methods mentioned
above. The core of our system is an array of neural networks, but we use Hidden
Markov Models to compensate for the lost of local similarity information. Hid-
den Markov Models are based on probability theory and is less arbitrary than
regular expression functions. The outputs from the array of neural networks are
then post-processed using Fuzzy Logic in order to yield new information. The
neural network core of the system easily lends itself to parallelism. Paralleliza-
tion is important in order for the system to cope with very large data sizes.
We have identified two approaches used to parallelize neural networks: (a) par-
allel neural network execution environment [8], and (b) parallel neural network
programming language [9].

For the parallel neural network execution environment approach, it is the
general case that neural network algorithms share similar phases of execution.
For example, loading of patterns, propagation, error calculation, weight correc-
tion, and so on. A set of standard function headers, governing the operation of a
neural network, is defined, as well as the mode of interaction among those func-
tions. An end-user has to “override” those functions, to fit the problem being
solved. Once this is done, the execution environment will run those functions in
the correct order, and automatically parallelize the functions which have been
identified to be parallelizable. The drawback of this approach is that the devel-
opment of the application is constrained by the pre-defined function headers.
This inflexibility might impact the efficiency of the application, if not outright
impede its development.

For the parallel neural network programming language approach, a program-
ming language specialized for the description of neural networks and its parallel op-
eration is used. Such a language contains specialized constructs to describe nodes
and connections, as well as parallel operations. The drawback of this approach is
that such languages are relatively obscure, and hence, has limited libraries, as well
as being unable to access libraries written in more popular languages.

We intend to develop our system using parallel libraries, such as Message
Passing Interface (MPI), which is available for popular languages such as C++.

96 M.C. Wooi Keat, R. Abdullah, and R. Abdul Salam

Low-level libraries such as MPI will give better speedup performance, and C++
has re-usable libraries, such as Standard Template Library (STL) which will help
speed up implementation. More details on our system will be provided in the
next section.

3 System Description

The system first has to be trained to abstract the properties of as wide a range of
protein superfamilies as possible. Each protein superfamily is represented by its
own neural network. A protein sequence in a particular protein superfamily must
first be encoded to yield an array of real values (e.g. between 0.0000000000000000
to 1.0000000000000000). This array of real values is an abstraction of the prop-
erties of that particular protein sequence, brought to surface by the encoding
scheme used.

A protein consists of a string of amino acids. Up to 20 unique amino acids
(each represented by a unique character) may make up a protein sequence. Hence,
a protein sequence is represented as a string of characters. An encoding scheme
is a function which takes in a string of characters (i.e. protein sequence) and
returns an array of real values based on a pre-determined algorithm. An encoding
scheme which may be good at abstracting global similarities may not be able to
adequately cope with local similarities.

Global similarity refers to similarity observed when the entire protein se-
quence is taken into account. Local similarity refers to similarity observed at
only a certain section of the protein sequence. An example of an encoding scheme
which captures global similarity is 2-gram encoding. 2-gram encoding captures
the frequency of unique character (i.e. amino acid) pairs in the protein sequence.
The various frequency values are normalized to be between 0 to 1. To overcome
the problem of inadequate abstraction, multiple encoding schemes are used, and
their outputs made coherent through normalization.

For abstracting local similarity, we propose the use of Hidden Markov Models.
One model for one particular local similarity. Local similarity can be observable
with the aid of multiple alignment tools. Once a protein superfamily is multiply-
aligned, a section of interest is identified and delineated. A Hidden Markov Model
is then generated to represent this window.

To train a particular neural network, the protein sequences in a superfamily
are each encoded using one or more global similarity encoding schemes, and
is window-scanned against one or more local similarity Hidden Markov Models.
During window-scanning against a particular Hidden Markov Model, the highest
probability value returned is used as the indicative value.

The real values returned from the various schemes (i.e. encoding and Markov)
are normalized according to a pre-determined algorithm, in order to prevent over-
bias in the network training. Once the values are normalized, they are fed into
the neural network. The neural network has an input layer, a hidden layer, and
a single output node. This single output node is defaulted to 0 (i.e. false). The
purpose of the training is to condition the network to respond with an output

Parallel Artificial Intelligence Hybrid Framework for Protein Classification 97

Subtitle

11/24/2003

UNKNOWN
SEQUENCE

NEURAL NETWORK
Protein Family A

NEURAL NETWORK
Protein Family B

NEURAL NETWORK
Protein Family C

FUZZIFIER

Neural Network outputs are taken in
and fuzzified

NORMALIZER

Values are normalized before being fed
to the neural network

HMM ANALYZER

2-GRAM ENCODING

FUZZY RULES

Fuzzy inputs are processed to
generated human-readable output

Human-readable output

Fig. 2. Schematic illustration of the hybrid system

value of 1 (i.e. true), or as close to 1 as possible, whenever a sequence of similar
characteristics (with respect to the combination of encoding and Markov schemes
used) is presented to it.

Once each protein superfamily is abstracted to its own neural network, the
system is ready to analyze unknown sequences. The unknown sequence is first
transformed into a set of real values inputs, using the same combination of en-
coding and Markov schemes that was used to train the array of neural networks.
Once transformed, the values are fed into each neural network. The neural net-
work returning the highest value (i.e. nearest to 1) is deemed to be in resonance
with the unknown sequence. As such, the unknown sequence is considered to
exhibit the same structural/functional characteristics of the protein superfamily
represented by the resonant neural network. A schematic of the system described
above is given in Figure 2.

However, the output of the other neural networks could also yield potentially
useful information. To analyze these residue data, fuzzy logic is used. The outputs
from the neural networks are arranged in a matrix (refer to Figure 3), and
then fuzzified based on pre-determined membership classes. When a particular
unknown sequence S? (refer to Figure 3) is submitted for analysis, it will generate
an array of signals of varying intensities (HI, MED, LO). This “fuzzy signature”
can be compared to the “fuzzy signature” of other known sequences. The purpose
of this comparison is to determine which known sequence, or combination of
sequences, is best able to mimic the functionality of the unknown sequence. Such
information may be useful for drug synthesis and drug substitution purposes, as
well as drug side effect analysis.

98 M.C. Wooi Keat, R. Abdullah, and R. Abdul Salam

F1

F2

F3

S1

0.82

0.45

0.25

S2

0.40

0.88

0.21

S?

0.75

0.52

0.15

Protein Sequences
P

ro
te

in
 F

am
ili

es

F1

F2

F3

S1

HI

MED

LO

S2

MED

HI

LO

S?

HI

MED

LO

Protein Sequences

P
ro

te
in

 F
am

ili
es

FUZZIFIER

Fig. 3. Schematic illustration of the fuzzifier process

This system could be used to organize existing protein data in a manner
which will enable structural/functional inferences to be made on unknown, as
well as synthetic sequences. This will assist the process of drug target discovery,
as well as drug synthesis. A drug target could be patented and licensed to drug
manufacturers.

Experimental variations can be easily introduced into this framework to de-
termine if any new knowledge could be generated. For example, a particular pro-
tein family (i.e. neural network) could be represented by its own unique encoding
technique, or may share an encoding technique with other families. A particular
protein family will also be represented by hidden Markov models based on mo-
tifs unique to that family. The general idea is that whichever encoding method
and hidden Markov model used for a particular family must be able to abstract
the defining properties of that family. When an unknown protein sequence is
presented to a particular neural network, it is encoded using the same method
that was used to encode the data that the neural network was trained on. Fur-
thermore, that unknown sequence is window-scanned with respect to the hidden
Markov model accompanying that neural network, and the highest probability
value obtained is used.

Considering the very large protein data size that the system has to process,
parallel processing offers an effective way to address computation performance
issues. Parallel processing can most contribute to performance improvement in
the neural network training section of the system. Neural network training is
time consuming especially when the training data set is very large. The neural
network used by this system has one input layer, one hidden layer, and a single
output node (refer to Figure 4).

To parallelize the training of the neural network, independent computa-
tion paths are first identified. For example, the lines of computation shown in
Figure 5 are independent of the lines of computation shown in Figure 6. The
only commonalities are the input values and final output value.

The commonalities (i.e. the input values and the final output value) will be
handled by the master computer. The independent paths of computation will
be distributed to worker computers, to be processed in parallel. The system will
alternate between a sequential state and a parallel state. The initial state will

Parallel Artificial Intelligence Hybrid Framework for Protein Classification 99

I

I

I

H

H

H

O

Fig. 4. Neural network with one input layer, one hidden layer, and one output node

I

I

I

H

H

H

O

Fig. 5. Example of an independent computation path

I

I

I

H

H

H

O

Fig. 6. Another example of an independent computation path

be sequential, as the input values are gathered, and distributed to the worker
computers by the master computer. Once this is done, each worker computer

100 M.C. Wooi Keat, R. Abdullah, and R. Abdul Salam

performs its assigned path of computation independently, and in parallel. The
master computer then gathers the results from each worker, and sums up into
an output value. This cycle repeats itself, once for each training datum. Protein
consists of up to 23 different amino acids, and with 2-gram encoding, we will have
529 (23×23) nodes for both the input and hidden layers. The number of nodes,
as well as connection weights linking those nodes will increase exponentially
if we move on to 3-gram encoding (23×23×23). Furthermore, the system has
an array of neural networks, one for each protein family. The training of one
neural network is independent of the other, and hence, could be carried out in
parallel as well. Therefore, parallel processing is necessary, not only because of
large protein data sizes, but also, due to the size of the neural network as well.
Parallel processing will enable this system to be scalable, not only in terms of
data size, but also, in terms of complexity.

4 Anticipated Advantages Over Current Work

Currently, alignment tools are commonly used to help determine homology
among sequences [1], [2]. Homology among proteins is assumed to be a result
of those proteins having a common evolutionary origin. The main drawback of
current alignment tools is that they are based on the identity (i.e. A = A, B
= B, etc.) concept of similarity, or the “point accepted mutation” concept of
similarity (i.e. A = A and A = B, C = C and C = D, etc.). Gaps have to be
artificially inserted to obtain a subjectively defined optimal standard based on
arbitrarily assigned scores and penalties. Furthermore, when the number of se-
quences that has to be compared is very large, the presentation of the end result
may be humanly indecipherable. Our proposed hybrid system supports multiple
encoding schemes for global similarity abstraction. Therefore, it is not restricted
to only one concept of similarity. With the use of Hidden Markov Models, we
replace arbitrary scoring with the concept of probability, for a more realistic
assessment of local similarity. The overall system does not require artificial gaps
to be inserted. Furthermore, with post-processing done by the fuzzy logic com-
ponent of the system, we will be able to filter the results of the analysis into a
more humanly decipherable summary. Systems based on Hidden Markov Models
have been used to represent sequence collections before [3]. However, the main
drawback is that it relies on explicit similarity. If the similarity of the sequences
is implicit, Hidden Markov Models would not be able to model the collection.
Our proposed hybrid system supports encoding schemes which will be able to ex-
tract implicit similarities, therefore, overcoming the limitation faced by Hidden
Markov Models systems. Neural Networks have been used to classify proteins be-
fore [4]. However, to capture local similarity, a regular expression based scoring
function was used. The drawback of this is that (a) regular expressions merely
match a string with another without indicating the probability of the consensus,
and (b) arbitrary scoring is involved. Furthermore, the neural network output
spectrum was divided into four regions, to cater for only four protein superfam-
ilies. This output spectrum division approach may not be feasible, as more and

Parallel Artificial Intelligence Hybrid Framework for Protein Classification 101

more protein superfamilies come into the picture. Our proposed hybrid system
attunes one neural network to one protein superfamily. As more and more pro-
tein superfamilies come into the picture, the system is easily scalable – requiring
only the further addition of neural network components.

5 Contributions to the Field of Bioinformatics

This system has four main contributions to the field of bioinformatics: (a) it
provides a framework for the integration of various sequence encoding schemes
with one or more Hidden Markov Models; (b) the framework supports variations
additions and modifications to the manner it processes protein similarities by re-
maining essentially unchanged; (c) applies fuzzy logic in a novel manner as a data
post-processor; and (d) was designed to be able to incorporate parallelization,
in order to for the system to be scalable, and hence, practical.

This system allows values generated from different sequence encoding schemes
and probability values generated from Hidden Markov Models to be analyzed
in an integrated manner. Values from Hidden Markov Models have been used
as inputs to neural networks before (e.g. in speech recognition applications [7]).
However, our system extends this concept by including values from sequence
encoding schemes, along with a normalizer to prevent over-bias. Our system
supports additions and modifications to the encoding schemes used, as well as
additions of Hidden Markov Models, in order to facilitate the incorporation of
new discoveries into our system. The framework of the system is robust enough
to remain essentially unchanged as new discoveries are seamlessly incorporated
into it. Other systems which are hard-coded on a specific algorithm may become
redundant as new discoveries on protein similarities are made. Fuzzy logic has
been used in bioinformatics before, to study gene expression [6]. This system
applies fuzzy logic in a novel manner, in order to post-process the outputs from
the array of neural networks that makes up the system, in order to help yield
new information on potential drug side effects. We do not know of any other
application of fuzzy logic in this manner.

We also developed an approach on how to parallelize this system, in order to
make it scalable. This will help make the system a practical protein data mining
system, able to cope with very large data sizes, as well as the incorporation
of more complex encoding schemes. Parallelization occurs on two levels. On
the first level, the training of a particular neural network alternates between a
sequential state and a parallel state. On the second level, the system has one
neural network for one protein family, and the training of one network can be
conducted independently (i.e. in parallel) of another.

6 Future Work

For the system described above, instead of using conventional neural networks,
we could explore the use of weightless neural networks. Weightless neural net-
works have been typically used for image recognition problems [10]. We could

102 M.C. Wooi Keat, R. Abdullah, and R. Abdul Salam

adapt the weightless neural network concept to cater for the problem of protein
classification [11], and compare its results against the results obtained from con-
ventional neural networks based on the delta learning rule or backpropagation.
Weightless neural networks only require one pass of the training data, and offer
an attractive alternative in terms of improved training performance.

References

1. Altshul, S., Madden, T., Schaffer, A.: Gapped BLAST and PSI-BLAST: A New
Generation of Protein Search Programs. Nucleic Acids Research (1997).

2. Notredame, C.: SAGA: Sequence Alignment by Genetic Algorithm. Nucleic Acids
Research (1996).

3. Krogh, A.: An Introduction to Hidden Markov Models for Biological Sequence.
Technical University of Denmark (1998).

4. Wang, J., Ma, Q., Shasha, D., Wu, C.: New Techniques for Extracting Features
from Protein Sequences. IBM Corporation (2001).

5. Ohler, Uwe., et. al.: A Hybrid Markov Chain – Neural Network System for the
Exact Prediction of Eukaryotic Transcription Start Sites, University of Erlangen,
Nuremberg (2000).

6. Woolf, P., Wang, Y.: A Fuzzy Logic Approach to Analyzing Gene Expression Data.
Physiol Genomics (2000).

7. Cohen, M., Rumelhart, D., Morgan, N.: Combining Neural Networks and Hidden
Markov Models for Continuous Speech Recognition. Stanford University (1992).

8. Vuurpijl, L., Schouten, T., Vytopil, J.: PREENS : Parallel Research Execution
Environment for Neural Systems. University of Nijmegen (1992).

9. Hopp, H., Prechelt, L.: CuPit-2: A Portable Parallel Programming Language for
Artificial Neural Networks. Karlsruhe University (1997).

10. Burattini, E., DeGregorio, M., Tamburrini, G.: Generating and Classifying Recall
Images by Neurosymbolic Computation. Cybernectics Institute, Italy (1998).

11. Chew, Martin Wooi Keat., Rosni Abdullah., Rosalina Abdul Salam.: Weightless
Neural Network Array for Protein Classification (unpublished), Universiti Sains
Malaysia, Malaysia (2004).

Parallelization of Phylogenetic Tree Inference
Using Grid Technologies

Yo Yamamoto1, Hidemoto Nakada1,2, Hidetoshi Shimodaira1,
and Satoshi Matsuoka1,3

1 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology 2-12-1 Oo-okayama,

Meguro-ku, Tokyo, Japan 152-8550
yamamoto@matsulab.is.titech.ac.jp,

hide-nakada@aist.go.jp,
{shimo, matsu}@is.titech.ac.jp
http://www.is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology,
Grid Technology Research Center, Central2,

1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan
3 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

Abstract. The maximum likelihood method is considered as one of the
most reliable methods for phylogenetic tree inference. However, as the
number of species increases, the approach quickly loses its applicability
due to explosive exponential number of trees that need to be consid-
ered. An earlier work by one of the authors [3] demonstrated that, by
decomposing the trees into fragments called splits, and calculating the
individual likelihood of each (small) split and combining them would re-
sult in a very close approximation of the true maximum likelihood value,
as well as achieving significant reduction in computational cost. However,
the cost was still significant for a practical number of species that need
to be considered. To solve this problem, we further extend the algorithm
so that it could be effectively parallelized in a Grid environment using
Grid middleware such as Ninf and Jojo, and also applied combinatorial
optimization techniques. Combined, we achieved over 64 times speedup
over our previous results in a testbed of 16 nodes, with favorable speedup
characteristics.

1 Introduction

All form of life today on earth originated from a common biological ancestor;
so, any species may be placed as some leaf node of some gigantic phylogenetic
tree. One valuable endeavor is to infer a phylogenetic tree given a set of a variety
ofvarious species to determine how the individual species have exactly evolved
and relate to each other during the course of evolution, in particular when a
particular split branching has occurred given a pair of different species. Such

pp. 103–116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

104 Y. Yamamoto et al.

research is quite important to reveal the mechanism of how evolutions have and
will occur for various life forms.

Traditional biology mostly inferred the phylogenetic relationships amongst
the species by their external features. However, such comparisons often tend
to lack precision and objectiveness, and in fact sometimes lead to inconsistent
results. With the discovery of DNA, it is now becoming possible to infer phy-
logenetic trees using mathematical models of evolution constructed on genetic
DNA sequences. However, in practice straightforward inference algorithms built
on such models have substantial computational complexity, and have remained
applicable only to very small problems.

Based on our past work that aimed to reduce the complexity in tree inference
without losing precision [3], we further improve the algorithm by applying both
numerical optimization and parallelization techniques on a cluster/Grid envi-
ronment., using task parallel Grid middleware Ninf[2] and Jojo[1]. We obtained
nearly 64-fold speedup over our earlier results as a combined effect of both on
a small cluster test environment of 16 nodes, allowing us to scale the problem
significantly.

2 Inferring Phylogenetic Trees — The Complexity
Problem

A sample phylogenetic Tree tree is illustrated in Fig. 1. The maximum likeli-
hood method that will compute such a tree will compute the likelihood value
of xk at a locus k, and consider the product of all such likelihood

∏
k L(xk)

as the likelihood value induced from the particular genomic DNA sequences.
L(xk) will be obtained typically via a non-linear optimization process involv-
ing considerable iterations, and as will be computationally non-trivial, as shown
in Fig. 2. After obtaining all the likelihood values of candidate phylogenetic
trees, we consider the one with the largest one likelihood value to be more most
trustworthy. However, the number of phylogenetic trees is quite large in itself,
or more precisely, for n specifies the number of tress is ((2n − 5)!)/(2n−3(n −
3)!) = O(2nn!). As a result, computing the likelihood values for all possi-
ble candidate trees becomes quickly impractical, even for a relatively
small n.

To cope with such massive computational complexity, one of the authors pro-
posed an approximate method for computing the likelihood value of a given tree.
We call a branch of a phylogenetic tree a split, and given n species we can divide a
given phylogenetic tree into (n−3) set of splits. We then compute the likelihood
values of a given splits using the maximum likelihood method, and derive an ap-
proximate value of the likelihood value using matrix manipulations. This method
has considerable computational complexity advantage without losing much pre-
cision. Since the total number of possible splits is 2n−1 − (n + 1) = O(2n), we
can significantly reduce the overall computational cost. However, the number
of phylogenetic trees is still significant, and this method, although a definite
improvement, still was too expensive of realistic values of n.

Parallelization of Phylogenetic Tree Inference Using Grid Technologies 105

Rabbit Cow

Seal Human
Chimp

(Common Ancestor)

Opossum

Mouse

Fig. 1. An Example Phylogenetic Tree

GC A THum an
Chim p
Seal
Cow
Rabbit
Mouse
Opossum

C ACC CCTACTCCTCATTGTACCCATTCTAATCGCAATGG
C A TC ACC CCTACTCCTCATTGTACCCAT CTAATCGCAAT GA C A

A TA C TCTC CT CA TT T CC AT CT TCGC T GA ATT TA A A A C A T CC CG
A TA C T T CTA TT T CC AT CT T GC T GA ATT A A A CGC T AA A T C C AT G
AA C T T TA T T CC T CT T GC T GA ATT A CA TT AC CC TT CC A TG A T A A
AA T T T T CC T CT T GC T GA ATT A CT C C ATC AACAC CC G C CA T AA C
A T T T CC T CT T GC T GA ATT T A A CA A GTCT AT T TATA TA TA C CC A

1x 7x 20x
Fig. 2. DNA Sequence, and computing of the likelihood values

3 Overview of Our Proposed Improvements to the
Split Method

Our improvements over the previous proposal are twofold. One is to apply com-
binatorial optimization techniques to reduce the search space for the trees. An-
other is to parallelize the search effectively over the Grid using appropriate task-
parallel Grid middleware, Ninf[2] and Jojo[1]. The resulting program was shown
to execute efficiently and with significant speedup, even for a relatively small
number of nodes on a small-scale cluster. Figure 3 shows the overall workflow;
here, we see that the program largely consists of two phases, the first phase be-
ing “computing the likelihood value of each split using the maximum likelihood
method”, and the second phase being the “combining the splits and searching
the optimal results using combinatorial optimization techniques and their paral-
lelization”. The former will perform parameter-sweep parallelization of likelihood
values of each possible split, either sequentially or in parallel on the Grid, and
output the results in filles files for the second phase. The second phase in turn
will either directly obtain the likelihood values of all combinations of splits, or
use combinatorial optimization techniques such as branch-and bound or simu-
lated annealing, and obtain the optimal likelihood value from the “more likely”
candidates, again possibly in parallel on the Grid.

For both phases, we parallelize the computation using master-worker scheme,
and implement the former using the Ninf GridRPC system, whereas for the latter

106 Y. Yamamoto et al.

S
plit D

ecom
position of P

hylogenetic T
ree

Sequential Computation of
Maximum Likelihood Value

Sequential Computation of
Maximum Likelihood Value
of Splits

Reading the Likelihood
Value from the File

C
reating a List of Likelihood V

alues of S
plits

Initialization

Parallelization of

Likelihood

Parallel Computation of
Maximum Likelihood Value
of Splits

Ninf

F
inalization

Parallel Likelihood
Value Combing Splits

Parallel Simulated Annealing
Combining Splits

Parallel Branch-and-Bound
Combining Splits Jojo

Jojo

Jojo

Ninf

Computing Maximum
Likelihood Value

Searching and Combining Splits into
Phylogenetic Trees

Simulated Annealing
Combining Splits

Branch-and-Bound Combining
Splits

Sequential Computation of
Likelihood Values by
Combining Splits

Maximum

Fig. 3. The Overall Workflow of Deriving the Phylogenetic Tree with Maximum Like-
lihood Value

we perform further hierarchical master-worker parallelization using a Java Grid
parallelization system Jojo. There are various reasons we employ two different
Grid middleware systems; the primary reason for using Ninf GridRPC is that,
it is easy to integrate existing maximum likelihood numerical packages, while
the reason we employ Jojo for the second phase is that, the latter involves
hierarchical parallelization, in particular branch-and-bound computation. From
a pure Grid middleware research perspective it is also interesting to investigate
how the two different middleware will interoperate smoothly on the Grid.

4 Optimizing Phylogenetic Tree Inference

In order to reduce the number of candidate phylogenetic trees., we employ com-
binatorial optimization techniques.

4.1 Using Branch-and-Bound

Since each phylogenetic tree corresponds to (n − 3) sets of splits, we obtain a
new tree by combining a split onto a star-shaped phylogenetic tree one by one,
as shown in Figure 4. Since there are multiple ways how split can be combined
at each stage, the search space branches out into a search tree as in Figure 4,
with the leaves being the candidate phylogenetic tree. We then apply branch-
and-bound technique onto this search tree, allowing us to prune the search space
significantly with an appropriate bounds function.

In order to prune the branches, we compute the upper bound of the likeli-
hood value for each node in the tree, and compare the value against the current
solution; if the upper bound is greater, we continue the search by expanding the
node; otherwise, we prune the branch of the search tree under that node.

Parallelization of Phylogenetic Tree Inference Using Grid Technologies 107

1
1

2

3 4

5

(1,2,3/4,5)

1

32 4

5
Combine a Split

(1,2/3,4,5)

Star-Shaped
Phylogenetic
Tree

1

23 4

5

(1,3/2,4,5)

1

2

4 3

5

(1,2,4/3,5)

1

42 3

5

(1,2/3,4,5)

1

24 3

5
(1,4/2,3,5)

1

2

5 3

4

(1,2,5/3,4)

Fig. 4. Formulating a Search Tree of Combining Splits

As an upper bound, we employ the combined likelihood value where we com-
bine all possible splits onto that (pair of splits) node.

4.2 Using Simulated Annealing

For simulated annealing, we obtain the neighboring solutions based on splits,
as we see in Figure 5. Firstly, from the set of splits that signifies the current
solution, we arbitrarily remove one of the splits. Then, of the three possible
splits that could be combined with the current set, we remove the split that

1
2

3

4

5
6

7

8

12
3

4

5 6
8

7
1

7 8

2
3

4
6

5

12
5

6

7 8
4

3
34

5

6

78
2

1

8

12
5

6

7 4

3

4
5

6

78
3

1

2

3
5

6

78
4

1

2

1 2 3 4 5 67 8

1 2 4 3 5 67 8

1 2 3 4 5 67 8
1 2 3 4 5 67 8

Candidate Candidate
Solutions

Current
Solution

Neighbor
Solutions

1 2 3 4 5 67 8

Splits

Fig. 5. Creating Neighboring Solutions and Candidates in the Simulated Annealing
Scheme

108 Y. Yamamoto et al.

would result in idempotent return to the original before split removal. Then,
from the remaining two we pick one at random, and combine with the set of
splits, deriving the neighboring solutions. The “cooling” function we employed
was, given the cooling parameter α we simply perform exponential degradation
Tnext = αTcurrent (0 << α < 1).

5 Parallelizing Phylogenetic Tree Inference on the Grid

If you wish to include color illustrations in the electronic version in place of or
in addition to any black and white illustrations in the printed version, please
provide the volume editors with the appropriate files.

If you have supplementary material, e.g., executable files, video clips, or audio
recordings, on your server, simply send the volume editors a short description
of the supplementary material and inform them of the URL at which it can
be found. We will add the description of the supplementary material to the
online version of LNCS and create a link to your server. Alternatively, if this
supplementary material is not to be updated at any stage, then it can be sent
directly to the volume editors, together with all the other files.

5.1 Using Simulated Annealing

The computation in the first phase continues in a simple master worker style.
The master first creates a pool of phylogenetic trees or splits subject to further
computation, and sends them as jobs off to the worker nodes on the Grid one by
one. The worker computes the maximum likelihood and returns the value; the
worker aggregates the returned result and resends another job to an idle worker,
until the pool of trees and/or splits is exhausted.

5.2 Parallelizing the Split Method Directly

The second phase can also be parallelized in a straightforward fashion in a similar
manner using master-worker style computation. This time the master sends the
phylogenetic tree and the corresponding split pair to the workers. The workers in
turn computes the approximate likelihood values of the combined phylogenetic
tree based on the likelihood values obtained in phase one, and returns the result
to the master, The master keeps track of the process, continuing until all the
phylogenetic trees that can be generated are covered, and picks the tree with
the largest likelihood value as the result.

5.3 Efficient Parallelization of the Split Method Using
Branch-and-Bound

With branch-and-bound, parallelization is performed somewhat differently for
phase two. However, a common problem with parallelizing branch-and-bound is
that, there could be considerable load imbalance depending on how the search
tree is divided, and moreover, some computation may go to waste if the bound

Parallelization of Phylogenetic Tree Inference Using Grid Technologies 109

value of some branch turns out to prune a computation ongoing on some other
processor. The shape and the depth of subtrees of a search tree may greatly
differ amongst one another, and whether or not a search should be conducted
on a subtree is runtime dependent. As such, nave master-worker subdivision of
(sub) search tree may turn out to be quite inefficient.

In order to avoid this problem, we set a limit on the number of “problems”
(i.e., computing the likelihood value of each split) individual workers will com-
pute for each subtree. The master maintains a pool of problems, and distributes
each one by one to the workers. The worker then proceeds to solve the problems
in the manner similar to Section 5.2. If the number of problems that the worker
has solved exceeds some threshold value, the problem is returned to the master.
The master in turn re-adds the problem to the pool for subsequent re-allocation
to some worker.

5.4 Parallelizing Simulated Annealing

For parallelizing simulated annealing, we employed the replica exchange method
as outlined below. Each worker maintains an independent simulated annealing
process, each with a different temperature parameter. At some periodic exchange
interval the worker sends the current likelihood value to the master, and requests
for exchanging the temperature value. Let us label this worker i. When the
master receives this request, the master notifies worker j, where j < i and holds
the maximum temperature value, that an exchange request has been made. The
worker j in turn judges whether the exchange of the temperature should take
place according to the temperature and the likelihood value it has received. If it
decides to accept the exchange it performs the temperature exchange and notifies
the master its previous temperature and the current likelihood value; the master
then notifies worker i that the exchange was successful, the worker i performs its
own exchange internally, and the entire exchange process completes. Otherwise,
if the worker j decides to deny the request, it notifies the master who in turn
notifies worker i that the exchange was unsuccessful. Irrespective of whether the
exchange was successful or not, the workers continue with their search until the
next exchange period is encountered.

6 Evaluation of Our Proposed Scheme

6.1 Evaluation Criteria and the Target Problem

As the evaluation criteria, we employed and measured the followings:

– Evaluating the original approximation algorithm using splits: We
initially investigate the effect of our original scheme of deriving the approx-
imate likelihood value by combining splits to form the phylogenetic tree, by
comparing its precision and compute cost

– Evaluating the reduction of the search space using combinatorial
optimization techniques: We next evaluate how much the search space

110 Y. Yamamoto et al.

has been reduced by employing branch-and-bound and simulated annealing
techniques

– Evaluating the parallelization efficiency and scalability: Although in
theory master-worker computation could approach near-perfect speedup, in
reality we may observe loss in efficiency as we scale the problem larger due to
various factors including communication overhead between the master and
the worker, as well as the load of the master increasing and becoming the
sequential bottleneck. The metrics we employ are firstly the speedup value
due to parallelization, i.e.,

Speedup =
Tserial

Tparallel

and in particular we measure the parallelization overhead as when we have
just one master and one worker. We also compute the scalability as:

Scalability =
Speedup

Nworkers

where Nworkers is the total number of workers.

We employed paml[4] as the program that computes the likelihood value
given a particular base sequence. For our sample problem we used the following
9 species: seal, cow, rabbit, opossum, mouse homo-sapience, dugong, armadillo,
and rat. The sequence data for each species are those for mitochondria down-
loaded from NCHI, and the sequence length is 3392.

6.2 Evaluation Environment

As a preliminary evaluation environment, we employed a cluster as a controlled
platform rather than to employ a full-fledged distributed Grid. The employed
Abacus cluster consists of dual Athlon MP 2000+ (1.67 Ghz) nodes with 1Giga-
Byte of memory, and interconnected via a 100Base-T network. Both the master
and the worker have been allocated on the nodes, and we measured using 2, 4,
8, and 16 nodes.

6.3 Evaluating the Original Approximation Algorithm Using Splits

Figure 6 shows the graph of the results of evaluating our original approximation
algorithm using splits. We employed 6 species from our 9, and from the total of
possible 105 phylogenetic trees, on the horizontal axis we plot the exact max-
imum likelihood value, versus the approximated value computed by combining
splits. As we observe from the graph, most of the values lie on the line y = x: as
such, we observe that our original approximation method is quite good.

Table 1 shows the effect on the computational costs using our approximation
method. For all possible phylogenetic trees for n species, we compare the actual
computation time of the approximation method, denoted as Tcomp, versus the
projected computation time using the maximum likelihood method, denoted

Parallelization of Phylogenetic Tree Inference Using Grid Technologies 111

-21700

-21680

-21660

-21640

-21620

-21600

-21580

-21560

-21540

-21520

-21500

-21700 -21650 -21600 -21550 -21500

Computed Maximum Likelyhood Value

A
pp

ro
xi

m
at

ed
L

ik
el

ih
oo

d
V

al
ue

Fig. 6. Comparing Approximated Likelihood Value with the Real Maximum Likelihood
Value

Table 1. Effect of Computational Cost Reduction Using the Approximation Method

n Ntree Tave (sec) Tpaml Tcomp

5 15 37 9 min 30 sec 3 min 7 sec
6 105 85 2 hours 30 min 6 min 55 sec
7 945 149 1 day 15 hours 35 min 22 sec
8 10,395 241 29 days 2 hours 44 min
9 135,135 330 1 year 5 months 18 hours 41 min

as Tpaml (computed as Tave × Tave, where Tave is the sampled average value
of computing the maximum likelihood value). As we observe in the table, we
drastically reduced the overall compute time.

The approximation method internally consists of two phases, where we com-
pute the maximum likelihood value of each split, and the second phase where we
combine the splits to form each phylogenetic tree. Figure 7 shows the breakdown
of the compute time for these two phases. As we can see, the time to combine
the split becomes more dominant as n grows larger. This is because the number
of splits is O(2n) whereas the number of possible phylogenetic trees is O(2nn!).
Based on this observation we simply parallelized the first phase whereas we per-
formed parallelization as well as combinatorial optimization for the second phase.

6.4 Evaluating the Reduction of the Search Space Using
Combinatorial Optimization Techniques

Branch-and-Bound. For branch-and-bound, we measured how much pruning
of the search tree is achieved. Since on every interior search nodes we need to

112 Y. Yamamoto et al.

0%

20%

40%

60%

80%

100%

5 6 7 8 9
Species

T
im

e
F
ra

ct
io

n

Combinng
Splits into
Phylogene
tic Trees

Computing
Likelihood
Value o f
All Splits

Fig. 7. Time Fraction of Two Phases in the Approximation Algorithm

combine all possible splits combinable with the current split that represent the
search status, the interior nodes take just as much time to compute the likelihood
value as the leaves; because of this we need to account for this cost and not just
account for the computational cost at the leaves. In total, we were able to prune
the search space by 83.4%, 93.5%, and 95.3% for 7, 8, and 9 species, respectively.

Simulated Annealing. For simulated annealing, the number of times the search
is repeated depends on the termination condition. Here, for benchmarking pur-
poses, we precompute the likelihood values of all the phylogenetic trees before-
hand, and have the termination condition be such that the result falls within
1% of the precomputed results for 10 consecutive times. Also, since there will be
effects of randomness in the results, we perform the experiment 3 times and take
the average of the results (Note that these are purely for evaluation purposes of
the obtained results, and not something to be used in practice.). We alter the
initial temperature and the cooling parameters in various experiments.

For 7 species, we found that, when we set the initial temperatures to be low,
the number of search repetitions will be smaller, but we also have had to enlarge
the cooling parameters, or otherwise we may not achieve convergence in the
results. Experimenting on various parameters, we found that we could converge
and reduce the search space by up to 95.2similar to the results obtained with
branch-and-bound.

6.5 Evaluation of Scalability with Parallelization

On evaluating simple parallelization of maximum likelihood value computation
for 5–6 species, we found the overhead to be about 12% for 6 species. This over-
head increases with larger n instead of decreasing, being counterintuitive since
the granularity does not decrease with a larger n. We currently consider that the
overhead is largely due to I/O of the phylogenetic tree itself, and working to re-
solve the issue. The results that follow must be regarded with this issue in mind.

Parallelization of Phylogenetic Tree Inference Using Grid Technologies 113

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Workers

ca
la

bi
lit

y

5 Species

6 Species

7 Species

8 Species

Scalability of Parallelizing the Split Combining
S

Fig. 8. Scalability of Parallelizing the Combining of the Splits in our Original Approx-
imation Algorithm

For scalability, we obtained approximately 6.5 to 7.5 times speedup with 8
workers, and 12.7 times speedup with 16 workers. Given that the overhead is
12%, these are nearly ideal results.

For parallelizing our approximation scheme without combinatorial optimiza-
tions, the overhead ranged from 30% for 5 species, to about 5% for 8 species.
Figure 8 shows the scalability graph, where we obtained 10.5 times speedup for
8 species on 16 nodes.

Evaluating Parallelization under Branch-and-Bound. We varied the num-
ber of species by 5–9 for evaluating parallelized branch-and-bound. The overhead
due to parallelization is less that 3–4% for over 5 species, indicating effective par-
allelization. Scalability is quite excellent as seen in Figure 9. We need to conduct
experiments with a significantly larger n to observe scalability of our paralleliza-
tion on a larger number of nodes on the Grid, however.

Evaluating Parallelization of Simulated Annealing (Replica Exchange
Method). Finally, for simulated annealing parallelized with replica exchange
method, we set the maximum temperature values to 5, 10, 20, 50, 100, 200,
and 500, and the minimum temperature to be 1. Each worker was assigned an
initial temperature value so that the intervals of the temperature values will have
constant ratio with its neighbors, and cover the range from the minimum to the
maximum. For example, if the maximum temperature is 8, and the number of
workers is 4, the ratio will be 2, and the assigned values will be 1, 2, 4, and 8.
We experimented with 4 to 16 workers and 7 species, with the the termination

114 Y. Yamamoto et al.

Scalability of Parallelized Branch-and-Bound

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Workers

S
ca

la
bi

li
ty

5 Species
6 Species

7 Species
8 Species

9 Species

Fig. 9. Scalability of Parallelizing the Branch-and-Bound Optimization

condition be such that if one of the workers satisfies the same condition as the
sequential case, the entire system is terminated.

Figure 10 shows the results: here, we observe that (as expected) the replica
exchange method derives no speedup, but rather contributes to stability of the
results convergence. Irrespective of the initial temperature value, the results
converge after about 60 iterations, achieving 94% pruning of the search space.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20

Workers

S
ea

rc
h

It
er

at
io

ns

Max Temp 5

Max Temp 10

Max Temp 20

Max Temp 50

Max Temp 100

Max Temp 200

Max Temp 500

Fig. 10. Convergence Characteristics of Simulated Annealing / Replica Exchange
Method

Parallelization of Phylogenetic Tree Inference Using Grid Technologies 115

Although subject to benchmarking in a larger system, the initial results are fa-
vorable in that the user of our scheme may be relieved of truing the parameters
appropriately to achieve fast convergence, when simulated annealing is advanta-
geous over branch-and-bound.

7 Conclusion and Future Work

We demonstrated that, by combining our approximation scheme of the likeli-
hood value of phylogenetic trees with appropriate combinatorial optimization
techniques and parallelization techniques on the Grid, we obtain substantial
speedups with good efficiency, pruning the search space as much as 95% for
both branch-and-bound as well as simulated annealing techniques. The net ef-
fects of all the approximations and optimizations was 64 times over our original
approximation method, or over 50,000 fold speedup over the straightforward se-
quential algorithm for obtaining maximum likelihood value for each candidate
tree, with 16 processors. This is a promising result that allows comparison of
fairly large number of n in a realistic timeframe.

As a future work, we need to further investigate methods for coping with
scaling up the computation for a larger n. In particular, we need to experiment
with other combinatorial optimization techniques, such as Genetic Algorithm,
and/or other algorithms for computing the likelihood values more efficiently.
We also need to reduce the parallelization overhead as well as matching the
more hierarchical nature of the resources on the Grid. Here, the hierarchical
organization features of Jojo could be of good help, but we need to validate
the scalability in a real Grid. Another issue under a practical setting is fault
tolerancy, which has not been built into our system. Since master-worker style
computation is somewhat amenable to easier checkpointing, we are planning to
use some of the checkpoint as well as recovery features in the new versions of Ninf
and Jojo. Finally, we need to make both our code as well as our environment
available, possibly in the form of portals so that computed results could be
systematically stored for access by phylogenetic researchers.

Acknowledgements

This research was partially funded by the Japanese ACT-JST “Terascale large-
scale optimization using commodity Grid technologies” project, as well as the
Japanese Scientific Grant-in-Aid (A) 14702061.

References

1. Hidemoto Nakada, Satoshi Matsuoka, and Satoshi Sekiguchi. “Java-Based Program-
ming Environment for Hierarchical Grid: Jojo”, in Proceedings of IEEE Computing
in Clusters and the Grid (CCGrid) 2004, the IEEE Press, April, 2004.

116 Y. Yamamoto et al.

2. Hidemoto Nakada, Mitsuhisa Sato, and Satoshi Sekiguchi. “Design and Implemen-
tation of Ninf: Towards a Global Computing Infrastructure”. In Future Generation
Computing Systems, Metacomputing Issue, Vol. 15, pp.649–658, 1999.

3. Hidetoshi Shimodaira. “Multiple Comparisons of Log-Likelihoods and Combining
Nonnested Models with Applications to Phylogenetic Tree Selection”, in Comm. In
Statistics, Part A-Theory and Meth., Vol. 30, pp. 1751–1772, 2001.

4. Z. Yang. “Paml: A Program Package for Phylogenetic Analysis by Maximum Like-
lihood”, in CABIOS, Vo. 13, pp. 555–556, 1997.

EMASGRID: An NBBnet Grid Initiative for a
Bioinformatics and Computational Biology

Services Infrastructure in Malaysia

Mohd Firdaus Raih1,2, Mohd Yunus Sharum1,
Raja Murzaferi Raja Moktar1, Mohd Noor Mat Isa1,

Ng Lip Kian3, Nor Muhammad Mahadi1,2, and Rahmah Mohamed1,2

1 Interim Laboratory, National Institute for Genomics and Molecular Biology,
Heliks Emas Block, UKM-MTDC Smart Technology Centre,

43600 UKM Bangi, Malaysia
http://genome.ukm.my/

2 School of Biosciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia

http://www.ukm.my/biosains/
3 Asia Pacific Science and Technology Centre, Nanyang Technological University,

School of Mechanical and Production Engineering,
50 Nanyang Avenue, Singapore 639798

http://apstc.sun.com.sg/

Abstract. The plethora of bioinformatics tools currently available to
the biologist, and the diversity of problems that these applications were
designed to solve, has necessitated a look at providing a single environ-
ment which can serve as an interface to these many applications. At
the same time, this environment should also be able to function as an
infrastructure resource with adequate computational capacity to solve
the data volume which is currently available from numerous genomics
projects. We discuss the setting up of a national level infrastructure ini-
tiative which utilizes grid computing technology to serve geographically
distributed users in Malaysia. This infrastructure was designed to pro-
vide access to high performance computational resources made available
by Sun Microsystem’s Sun Grid Engine (SGE) using different interfaces
which access a pipeline of bioinformatics software. The underlying com-
puter system, such as operating systems and high performance comput-
ing applications, were bypassed with the creation of an application layer
of bioinformatics tools (BioGrappler) or by accessing the compute re-
sources by the Grid Engine Portal (BioBox).

1 Introduction

The concept of a wrapper program or a web accessible interface of computational
biology software to interact with a compute grid is not new. Applications which
are sequence alignment based, such as BLAST [1, 2] and CLUSTAL W [3, 4] have
been deployed using high performance computing technologies numerous times.

pp. 117–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

118 M.F. Raih et al.

A web accessible interface to bioinformatics applications which run on a compute
grid is also not a new development. Many developments were however tailored
for computational biologists or bioinformaticists as the technologies used relied
heavily on the user’s ability to work in a Unix operating system environment as
well as writing scripts to assist in job submission and control. For large research
groups with adequate human resources and support in bioinformatics, this sce-
nario does not present a major problem. In developing countries and smaller
research groups, where the researcher population in a particular group may con-
sist of mainly molecular biologists or biochemists, with almost no understanding
of Unix, scripting or the concept of high performance computing (HPC) and
otherwise trivial technicalities such as operating systems can be considered an
important limiting factor.

Another important factor to consider is the serial nature of analysis for
biological data. DNA sequencing results are usually filtered, screened for vec-
tor sequences, edited, assembled and submitted to similarity searching. Sim-
ilarity searching results are then used for multiple sequence alignments, pro-
tein structure prediction and phylogenetics. Currently, there is no one soft-
ware that will fill all the analysis requirements available. There are however
many well proven software which will fill a particular niche requirement such
as BLAST for similarity searching, Clustal W for multiple sequence alignment
and Modeller [5] for protein structure prediction. Arising from this serial analy-
sis is the problem of format multiplicity. Each application may have input and
output formats which are different resulting in the result of one analysis not
being immediately readable as the input for a subsequent analysis. As such
there is a requirement that for high throughput data cases such as genome
projects, the software functions mentioned will have to work in a seamless
pipeline.

1.1 NBBnet and EMASGRID

The National Biotechnology and Bioinformatics Network, Malaysia (NBBnet) is
a virtual resource and capacity building network tasked at providing and man-
aging administrative services as well as scientific computational biology services
for the Malaysian biotechnology community through the use of informatics [6].
Via this virtual network, physical sharing of resources are conducted. Amongst
the resources shared are geographically distributed clusters of computational re-
sources. By utilizing available grid technology, heterogenous hardware in a single
physical location, are clustered into a single cluster grid by SGE. Job submis-
sions between cluster grids are executed by queue transfers using the Globus
toolkit [7]. EMASGRID, an acronym for Extensible Malaysia (NBBnet)-SGE
Grid is an infrastructure concept developed to serve geographically distributed
users in harnessing a centralized compute grid operated by SGE. This central-
ized infrastructure model is however quite suitable to be operated at a much
smaller departmental or campus level as well.

EMASGRID: An NBBnet Grid Initiative 119

1.2 Objectives for Biological Compute Grid Infrastructure

In Malaysia, the population of scientists involved in biotechnology research con-
sists of mainly molecular biologists or basically biochemistry trained personnel.
These researchers churn out diverse data sets from small volume data on specific
proteins of interests to high volume genome sequencing data. The unavoidable
fact under present circumstances is that probably all of them will need to utilize
some form of informatics assistance in managing and analyzing data. Another
unavoidable factor when taking into context the current scenario in high per-
formance computing is the usage of Unix based operating systems and highly
technical interfaces to HPC resources. The infrastructure initiative discussed
here addresses this problem by providing easy to use interface presented in the
‘language’ of the biologist as an application layer to a heteregenous high per-
formance computing infrastructure using Sun Microsystems’ Sun Grid Engine
technology (SGE). This in effect provides an avenue for non-bioinformatics savvy
biologists to operate and run high volume jobs on a compute grid with almost
no retooling or retraining exercises for understanding the infrastructure involved
being carried out.

2 Organization and Deployment

EMASGRID resources are accessible via multiple interfaces. Currently users are
able to access the computational infrastructure via web (two access interfaces)
or by remote Unix login via secure shells (ssh) (Fig. 1). Web browser access is
achieved by the Grid Engine Portal (GEP) BioBox initiative or via submissions
through the Bioinformatics Tools @ NBBnet (BT@N) interface. The BioBox in-
terface is essentially targeted for user balancing and ease of access to a wider
range of tools (17 applications are integrated - http://apstc.sun.com.sg/
biobox.php) as opposed to the BT@N interface with only BLAST integrated.
Operationally, this means that user volume will be distributed to the grid as
opposed to input volume. Here, we define user volume as the number of users
simultaneously logged in. Input volume is defined as the number of jobs required
to be distributed by SGE irregardless of the number of users. This access is suit-
able for geographically distant users who need access to the diverse set of tools
available via BioBox and may need to submit many jobs to different applica-
tions. Processing time depends on the volume of the data and complexity of the
input as only one node is utilized for one job.

2.1 Bioinformatics Tools @ NBBnet

The BT@N interface differs slightly in function when compared to the GEP
interface. Via this interface data in the form of FASTA formatted sequences are
contained in a MySQL database (Fig. 1). The BT@N interface was originally
developed as a personal database and meta-server system for limited volume
data. In this case, the limit defined as low volume was set at 100 entries with
each entry having a possibility of 2 sequences for nucleotide and its protein

120 M.F. Raih et al.

Fig. 1. Overview of the organization for the EMASGRID deployment

translation. Via this interface users can select sequences of interest and submit
them to SGE for BLAST. The system creates a file of the selected sequence and
submits the sequences for BLAST via SGE. Volume balancing of the input is
enabled via this interface. In the scenario above, if 50 sequences were selected
from the user database, the files would be split into user defined parameters of 10
to 20 sequences for each available CPU to process. Results are collected and can
be either reintegrated as either a single output file or as a corresponding BLAST
result for each sequence submitted (in this case 50 output files). Submission via
BT@N can also accept FASTA formatted sequence files via http uploads. At this
point in time, this system is only able to submit BLAST searches.

2.2 BioGrappler

The Bioinformatics Grid Applications Pipeline Environment, acronymed as Bi-
oGrappler, and developed as an NBBnet initiative to provide its members with
access to HPS resources, was designed as an application layer or wrapper pro-
gram to compute resources available to SGE (Fig. 1). As the name implies, its
primary objective was to provide a continuous flow of biological sequence analy-
sis resources, which are distributed over a heterogenous compute grid. Users are
able to access the interface via ssh logins. BioGrappler provides a utility where
a user can achieve the following:

– edit and ascertain sequencing chromatogram quality using phred [8, 9]
– screen for vector sequences (Cross match – http://www.phrap.org)
– database similarity searching (BLAST)
– sequence clustering by BLAST (blastclust [10]) and CD-HIT [11]

EMASGRID: An NBBnet Grid Initiative 121

– multiple sequence alignment by ClustalW
– protein structure prediction by Modeller.

BioGrappler which in essence is a bioinformatics wrapper program for SGE
(ver. 5.3) was written entirely in Perl. This allows flexibility and quick deploy-
ment capability to different platforms. In this laboratory, it is currently imple-
mented as an agent to SGE in a master-slave grid model with centralized control
and centralized data. It can easily be adapted to a cooperative model with cen-
tralized control and distributed data. The cooperative model would be better
equipped to enhance the performance of the grid processing for cases where the
nodes have ample storage space for the multiple databases required. To date, the
developments have been extensively tested on Linux (kernel 2.4.26). However,
this does not restrict the compute nodes to just Linux as BioGrappler need only
run on the master node. The major advantages which BioGrappler has over the
previously discussed web accessible systems is the suite of applications which are
arranged as a workflow and the capability to better tap SGE for a more efficient
workload distribution. This gives the effect of a very customized job submis-
sion such as those which can be achieved by scripts. BioGrappler accepts 2 sets
of formats as the primary input namely either ABI files (chromatograms) or
FASTA formatted sequence files. The program phred is used for quality editing
of the ABI files. The output of phred is prepared to be submitted as the input
for either a vector screening application (Cross match) or a sequence database
similarity search (BLAST). The applications can still be operated as standalone
job submissions. Sequences which need to be submitted to Modeller for protein
structure prediction can be prepared as Modeller input files directly and will be
submitted to SGE for balancing of the queue and processing load.

BioGrappler consists of three basic levels of data flow management, namely,
(1) the input management system, (2) the submission and SGE management
module and finally (3) the output management module. The input management
module controls the splitting of queries to available resources. A simple approach
of splitting high volume input into smaller chunks of input for submission was
done. For example, a BLAST search for 10 000 sequences as input would be orga-
nized into input throughput of 20 to 50 sequences per submission. EMASGRID
is operated using 10/100 Mbps ethernet. Therefore, we observed that smaller
numbers of sequences per submission, which means a higher number of submis-
sions per session, would quickly exhaust the network bandwidth, resulting in
loss of communications with networked file systems and causing the problem
of runaway nodes. By simply limiting CPU submissions to 20 to 50 sequences,
and thereby creating bandwidth ‘breathing space’, there was a decrease in the
problem of runaway nodes. The queries were not split for multi processor pro-
cessing as BLAST could sufficiently process the submission volumes tested. This
application was roughly able to speed up an unbalanced job by approximately
98 hours. However, no benchmarks were done due to the heterogenous and op-
erational nature of the grid. Furthermore, CPU resources were not uniformly
available for every submission. As a result only an approximate estimate of the
increased processing capacity is available. Optimizations and tuning were pri-

122 M.F. Raih et al.

marily done on the side of the wrapper program as opposed to optimizing from
SGE. Most optimizations to data processing jobs were done for high volume
case scenarios using available CPUs as distributed single units. BioGrappler has
currently been tested as able to submit and manage an average of 10 000 to 20
000 sequences as multiple submissions to SGE (20 CPUs) in a single session.
BioGrappler is currently not optimized to run multiprocessor jobs using MPI.

3 Discussion and Future Directions

We view the collaborative development of wrapper applications to existing and
proven bioinformatics software as an important aspect of grid computing in
the life sciences. The developments can be approached as collaborative but seg-
mented projects. This approach to life sciences grid proliferation can take place
by utilizing any existing grid technology available as in the case of this paper,
SGE was used. The main difference is that extensive work is done on the wrap-
per application to optimize the deployment of the SGE instead of vice versa.
We hope that by this approach, a more biologist friendly application could be
produced which could appeal to a wider user base.

Development of interfacing applications should be as uniform as possible
besides being operable in multiple platforms. As a solution to this, we have
approached the developments as web accessible applications. This is true for
the BioGrappler program as well. This interface, even though implemented in
a Unix environment, can bypasses almost all Unix commands except the most
basic such as directory changing, listing and file concatenation. Users will still
need to have basic comprehension of the Unix file system. As a result, we hope
to be able to deploy a web enabled version of BioGrappler in the near future. It
is also important to note that there should be clear identification of redundan-
cies in these developments. In this case, implementations and software which are
already available can be integrated into the system without creating new ones.
Perl has been an ideal tool for this approach as it enables quick multi platform
deployment. The problem of file format incompatibilities should also be taken
into account. These new developments should either make use of existing file
formats with the aid of a format integration agent. We have implemented this
agent by integrating it into a pipelined workflow as discussed. What this trans-
lates into are easy data sharing between application which produce or require
initially incompatible file formats. The limitations of such an agent lies mainly in
the fact that it needs to be constantly updated to recognize corresponding input
or output files for software which have been integrated into the grid. We have
overcome this by mainly identifying the format and setting a template of the
input and output in the integration process. This enables continuous integration
of applications into the grid which is accessible to BioGrappler. The deployed
web accessible BioGrappler, will adhere to a web services model which will allow
the biological data to be fully exploited as proposed by Lincoln Stein [12]. The
advantages of enclosing all computational analysis in a signle environment are
manifold. One of the most important is the ability to reorganize the outputs for

EMASGRID: An NBBnet Grid Initiative 123

mapping of gene regulatory networks, an important step to approach genomic
data as a complete system. A systems approach such as this, or systems biology,
would permit the study of all elements in a system in response to genetic (which
can be in digital format) or environmental perturbations [13].

4 Conclusion

The EMASGRID initiative stems from a need to address the problem of pro-
viding high performance computational infrastructure to a wide user base of
geographically dispersed Unix illiterate bench biologists. As such, our approach
has chosen to make use of available HPC technology as they are and concentrate
development efforts towards providing high performance capacity to the users
by limiting the interfaces to biologically comprehensible terminology in what is
an essentially ‘fire and forget’ approach to high throughput sequence analysis.
We believe that the model we have developed will be a useful infrastructure
deployment to other developing countries with the ambition for genomics and
high throughput biology but without the high throughput funding. Such a devel-
opment model could better promote a borderless integrative approach to solv-
ing biological question without requiring over crossing of traditional discipline
boundaries. This is hoped to result in parallel advancement of HPC technology
as the requirements are observed and at the same time create a more efficient
way of tapping these HPC advancements.

Acknowledgements

We thank the National Biotechnology Directorate, Ministry of Science, Technol-
ogy and Innovation, Malaysia for the funding and support to NBBnet and mi-
crobial genomics research grant IRPA 09-02-02-002 BTK/TD/003; the NBBnet
R&D team at the Interim Lab, National Institute for Genomics and Molecular
Biology, Malaysia; Sun Microsystems for a hardware grant in grid computing
and Asia Pacific Science and Technology Centre, Singapore for the technical
assistance in grid computing.

References

1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs, Nucleic Acids Research 25 (1997) 3389–3402.

2. Hokamp, K., Shields, D.C., Wolfe, K.H., Caffrey, D.R.: Wrapping up BLAST and
other applications for use on Unix clusters, Bioinformatics 19 (2003) 441–442.

3. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice, Nucleic Acids Research
22 (1994) 4673–4680.

124 M.F. Raih et al.

4. Li, K.B.: ClustalW-MPI:ClustalW analysis using distributed and parallel comput-
ing, Bioinformatics 19 (2003) 1585–1586.

5. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial
restraints, Journal of Molecular Biology 234 (1993) 779–815.

6. Firdaus Raih, M., Harmin, S.A., Ahmad, H.A., Isa, M.N.M., Mahadi, N.M.,
Ibrahim, A.L., Mohamed, R.: NBBnet — The National Biotechnology and Bioin-
formatics Network: A Malaysian initiative towards a national infrastructure for
bioinformatics. Electronic Journal of Biotechnology, 6 (2003) Available online:
http://ejbiotechnology.info/content/vol6/issue1/issues/03/

7. Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit, Inter-
national Journal of Supercomputer Applications 11 (1997) 115–128.

8. Ewing, B. and Green, P.: Basecalling of automated sequencer traces using phred.
II. Error probabilities, Genome Research 8 (1998) 186–194.

9. Ewing, B., Hillier, L., Wendl, M. and Green, P.: Basecalling of automated sequencer
traces using phred. I. Accuracy assessment, Genome Research 8 (1998) 175–185.

10. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ments search tool, Journal of Molecular Biology 215 (1990) 403–410.

11. Li W., Jaroszewski, L., Godzik, A.: Clustering of highly homologous sequences to
reduce the size of large protein databases, Bioinformatics 17 (2001) 282–283.

12. Stein, L.: Creating a bioinformatics nation, Nature 417 (2002) 119–120.
13. Hood, L., Galas, D.: The digital code of DNA, Nature 421 (2003) 444–448.

Development of a Grid Infrastructure for
Functional Genomics

Richard Sinnott1, Micha Bayer1, Derek Houghton1, David Berry2,
and Magnus Ferrier2

1 National e-Science Centre, University of Glasgow, G12 8QQ
{ros, bayermm, derekh}@dcs.gla.ac.uk

2 National e-Science Centre, University of Edinburgh, EH8 9AA
{daveb, magnus}@nesc.ac.uk

Abstract. The BRIDGES project is incrementally developing and ex-
ploring database integration over six geographically distributed research
sites with the framework of a Wellcome Trust biomedical research project
(the Cardiovascular Functional Genomics project) to provide a sophis-
ticated infrastructure for bioinformaticians. Grid technologies are be-
ing used to facilitate this integration. Key issues to be investigated in
BRIDGES are data integration and data federation, security, user friend-
liness, access to large scale computational facilities and incorporation of
existing bioinformatics software solutions, both for visualisation as well
as analysis of genomic data sets. This paper outlines the initial expe-
riences in applying Grid technologies and outlines the on-going designs
put forward to address these issues.

1 Introduction

Hypertension affects a quarter of the adult population in western societies and
is the major cause of cardiovascular mortalities. It is believed that hypertension
is caused by a combination of factors including both genetic and environmental
influences. The Wellcome Trust has funded a large (£4.34M) collaborative proj
ect (Cardiovascular Functional Genomics - ‘CFG’ [1]) to investigate the causes of
hypertension. This five year project involves five UK and one Dutch site (depicted
in Fig. 1). It is pursuing a strategy combining studies on rodent models of disease
(mouse and rat) contemporaneously with studies of patients and population
DNA collections. The project is a prime example of the large-scale computational
problems associated with modern biology, with requirements to combine vast
arrays of heterogeneous information about three species, human, mouse and rat.

Currently many of the activities that the CFG scientists undertake in per-
forming their research are done in a time consuming and largely non-automated
manner often requiring navigation to many different data resources web sites
and following multiple links to potentially relevant information. Similarly, in
their pursuit of novel genes and understanding their associated function the sci-
entists often require access to large scale compute facilities to analyse their data

pp. 125–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

126 R. Sinnott et al.

Glasgow
Ed inburgh

Leicester
Ox ford

London

N etherlands

Publically C urated D ata

Private
data

Private
data

Private
data

Private
data

Private
data

Private
data

C F G V irtu al
O rg an isa tio n Ensem bl

M edLine

G enB ank

O M IM

SW IS S -PR O T

…

D A T A
H U B

Fig. 1. Data Distribution and Security of CFG Partners

sets, e.g. in performing large scale sequence comparisons or cross-correlations
between large biological data sources.

The Biomedical Research Informatics Delivered by Grid Enables Services
(BRIDGES) project [2] has recently been funded by the UK Department of Trade
and Industry to directly address the needs of the CFG scientists and provide
a thorough investigation of relevant technologies for this purpose. Specifically,
BRIDGES will investigate the application of Open Grid Services Architecture –
Data Access and Integration (OGSA-DAI) [3] and IBM’s Information Integrator
product [4] to deal with federation of distributed biomedical data. Evaluation and
benchmarking of these technologies is an important component of the BRIDGES
work. In addition security is extremely important for the scientists. The scientific
data itself may have different characteristics. We consider three primary data
kinds based upon their security characteristics:

– Public data: including public genome databases such as Ensembl [29] and
GenBank [35], gene function databases such as LocusLink [36] and OMIM
[37] and relevant publications databases such as PubMed [39] and MedLine
[40];

– CFG specific data: that is to be shared between the CFG consortia only, or
subsets of the CFG consortia;

– Private data: including potentially patient records and animal experiment
data. This data has strict requirements on its access and usage which the
Grid infrastructure must adhere to.

To meet these security requirements, Grid technology is being employed to
establish a CFG virtual organisation. Virtual organisations provide a framework
through which the rules associated with the participants and resources are agreed
and enforced – especially those specific to security requirements. The distribution
of CFG partners and the data security needs are depicted in Fig. 1. A central

Development of a Grid Infrastructure for Functional Genomics 127

component to this virtual organisation is the notion of a Data Hub which is
described in detail in section 2.

The Grid infrastructure to be deployed by BRIDGES should address all of
the security concerns and interlinking of the different data sets in as transparent,
and user friendly a manner as possible. The overall architecture and Grid related
technologies themselves used to ensure this are discussed in section 2 (Overall
Bridges Architecture), section 3 (Data Access and Integration), section 4 (Secu-
rity Considerations) and section 5 (Portal Technologies). Issues and experiences
in Grid enabling bioinformatics tools that the scientists use for visualisation of
genomic data sets (and between data sets), as well as for analysis of these data
sets on high throughput computational farms are discussed in section 6 (Grid
Service Development). Finally in section 7, we draw conclusions and outline
plans for the future, and provide acknowledgements.

2 Overall Bridges Architecture

The architecture of the Bridges infrastructure is depicted in Fig. 2. A key com-
ponent of this architecture is the Data Hub which represents both a local, DB2
based, data repository, and data made available via externally linked data sets
(through Information Integrator federated views as described in section 2.2).
These data sets exist in different remote locations with differing security re-
quirements. Some data resources are held publicly whilst others are for usage
only by specific CFG project partners, or in some instances, only by the local
scientists. It is especially important that local security issues are considered.
Hence this architecture assumes the existence of multiple different institutional
firewalls. The Data Hub itself makes use of two key technologies: OGSA-DAI
and IBM’s Information Integrator.

2.1 Grid Enabled Data Access and Integration Solutions

The Grid community is currently developing appropriate specifications for data
access and integration in a Grid environment through the Data Access and In-
tegration Service working group [20] at fora such as the Global Grid Forum [21].
Much of this work is driven by results from the OGSA-DAI project [3] and the
recently funded follow up project, Data Access and Integration 2 (DAIT) [3].
OGSA DAI/DAIT is a collaborative programme of work involving the Univer-
sities of Edinburgh, Manchester and Newcastle, the National e-Science Centre,
with industrial participation by IBM and Oracle. Their principal objective is to
produce open source database access and integration middleware which meets
the needs of the UK e-Science community for developing Grid and Grid re-
lated applications. Its scope includes the definition and development of generic
Grid data services providing access to and integration of data held in rela-
tional database management systems, as well as semi-structured data held in
XML repositories.

128 R. Sinnott et al.

Fig. 2. Overall Bridges Architecture

n

n

OGSA- DAI

Local Area Network Client PC

Client
Side
Apps

Firewall

Client
Side
Web
Browser

Blast
Results
(Flat File)

WebSphere Portal Technologies

The Bridges Portal

SyntenyVista
Blast
Client

Web
Based
HTML
Client

Portal User
Profiles
DB

Firewall

Local
Private
Data

Local
Shared
Data

Public
Data

Blast
Service

Firewall

Firewall

IBM DB2
II

Firewall

CGF Site Y

Local
Shared
Data

Data
Hub

JAASvia SSL Java
WebStart

CFG Site X

Scot GRID

Globus Toolkit 3.x

T
ra

ns
ac

tio
n

M
gm

t

Se
c.

 M
gm

t

n

Development of a Grid Infrastructure for Functional Genomics 129

OGSA-DAI have focused upon making these data resources available within
an OGSA compliant architecture. The OGSA-DAI Grid services themselves pro-
vide the basic operations that can be used to perform sophisticated operations
such as data federation and distributed queries within a Grid environment, hid-
ing concerns such as database driver technology, data formatting techniques
and delivery mechanisms from clients. This is achieved by the provision of a
Grid-enabled middleware reference implementation of the components required
to access and control data sources and resources. OGSA-DAI itself can be con-
sidered as a number of co-operating Grid services. These Grid services pro-
vide a middleware layer for accessing the potentially remote systems that actu-
ally hold the data, i.e. the relational databases, XML databases or, as planned
for the near future, flat file structures. Clients requiring data held within such
databases access the data via the OGSA-DAI Grid services. The precise func-
tionality realised by OGSA-DAI is described in detail in the Grid Data Service
Specification [22]. A typical scenario describing how this functionality might be
applied to find, access and use (remote) data sets involves a persistent DAI
Service Group Registry (made available via a Grid services hosting container
such as Apache Tomcat [23]) offering persistent service factories (used for cre-
ating services to access and use specific data resources). Clients would contact
the DAI Service Group Registry to find out what data sets are available, and
once a required data source was found, create an instance of the Grid data ser-
vice (via the appropriate factory) that would give access to this resource. The
client can then issue queries (submit Perform operations via XML documents)
to this Grid data service which extracts the queries and submits them to the
appropriate databases, e.g. as SQL queries, before results are finally returned
in XML documents. Extensions to this scenario to have multiple Grid data ser-
vices supporting multiple, parallel queries executing through a given client query
are possible.

2.2 Commercial Data Access and Integration Solutions

Information Integrator – which was previously known as DiscoveryLink – has
been developed to meet the challenge of integrating and analyzing large quanti-
ties of diverse scientific data from a variety of life sciences domains. IBM Infor-
mation Integrator offers single-query access to existing databases, applications
and search engines. The Information Integrator solution includes the combined
resources of Information Integrator middleware and IBM Life Sciences services.
Using this software, IBM Life Sciences services can create new components that
allow specialized databases—for proteomics, genomics, combinatorial chemistry,
or high-throughput screening—to be accessed and integrated quickly and easily.
This is depicted in Fig. 3. At the far right of Fig. fig:ibm-ii-dai are the data
sources. Information Integrator talks to the sources using wrappers, which use
the data source’s own client-server mechanism to interact with the sources in
their native dialect. Information Integrator has a local catalogue in which it
stores information (metadata) about the data accessible (both local data, if any,
and data at the backend data sources). Applications of Information Integrator

130 R. Sinnott et al.

 SQL API
 (JDBC,
 ODBC,)

Information
Integrator

w
rapper

Data in
Oracle DB

Data in
DB2

Data in
Flat files

w
rapper

w
rapper

Client Running
Life Sciences App

Data Catalogue

Fig. 3. IBM Information Integrator Data Access and Integration

manipulate data using any supported SQL API, for example, ODBC or JDBC
are supported, as well as embedded SQL. Thus an Information Integrator appli-
cation looks like any normal database application.

OGSA-DAI and Information Integrator have broadly similar aims: to connect
distributed heterogeneous data resources. It is important that these two offerings
are compared in a realistic life science environment. BRIDGES investigations will
provide valuable information on the benefits of both of these solutions which will
inform the wider Grid and life science communities. Currently the Information
Integrator product for example requires programmatic access to different data
repositories. This is not always the case - indeed it is normal for the life science
public resources to not offer programmatic APIs where for example SQL based
queries can be issued. Instead, these resources will generally offer only a web
based front end for query submission, or make available their databases as com-
pressed downloadable files. Similarly, open issues are being discovered with the
current OGSA-DAI implementation, e.g. the ability to query resources offered
as flat files, e.g. bioinformatics resources such as SWISS-PROT, and perform
distributed joins across multiple remote databases.

The focus of OGSA DAI and Information Integrator is primarily upon access
and integration of data and not specifically upon security concerns. Security in
the context of the Grid is an area that is currently receiving much attention
since it is a crucial factor in the wider uptake of the Grid. There are numer-
ous standards under development addressing aspects of security [10, 24]. Within
BRIDGES we are considering two security aspects: authentication and authori-
sation. These are of course considered in conjunction with existing best practice
security, e.g. firewalls.

Development of a Grid Infrastructure for Functional Genomics 131

3 Security Considerations

Authentication is widely recognised as being only a starting point in establishing
the security of a given Grid based system [3]. Authentication allows establish-
ment of the identity of Grid users. The UK e-Science community has estab-
lished a public key infrastructure (PKI) based upon X.509 certificates [2] for
authentication which are issued through a central Certificate Authority (CA)
at Rutherford Appleton Laboratories (RAL) in the UK [13]. These certificates
are used to maintain a strong binding between a user’s name and their public
key when accessing remote Grid resources. It is recognised [3] however, that this
approach to certification is unlikely to scale to a wider community, e.g. once Grid
technologies are rolled out to the (life sciences) masses.

In the context of the Grid, X.509 based certificates are used to support the
establishment and management of virtual organisations (VOs). Currently, how-
ever, existing solutions to establishing VOs do not adequately address the se-
curity needs of VO members. A fundamental requirement in establishing a VO
is to ensure that efficient access control is achieved. Access control is usually
done by comparing the authenticated name of an entity to a name in an Ac-
cess Control List. In the UK e-Science Level 2 Grid [25] for example, which is
based upon Globus toolkit version 2 [17], statically maintained “gridmap files”
are used to limit who may or may not gain access to remote resources. This
is achieved through so called Grid gatekeepers. This approach lacks scalability,
manageability and does not meet the needs of dynamicity inherent to VOs. It
is also limited in the level of granularity of the security model, e.g. in support-
ing fine grained authorisation to shared resources by potentially, dynamically
changing collaborating VO members. We note that the CFG VO is unlikely to
be especially dynamic however.

To improve this situation, authentication should be augmented with autho-
risation capabilities, which in this context can be considered as what Grid users
are allowed to do on a given Grid end-system. This “what users are allowed
to do” can also be interpreted as the privileges users have been allocated on
those end-systems. The X.509 standard [2] has standardised the certificates of a
privilege management infrastructure (PMI). A PMI can be considered as being
related to authorisation in much the same way as a PKI is related to authen-
tication. Consequently, there are many similar concepts in PKIs and PMIs. An
outline of these concepts and their relationship are discussed in detail in [6].

A key concept from PMI are attribute certificates (ACs) which, in much
the same manner as public key certificates in PKI, maintain a strong binding
between a user’s name and one or more privilege attributes. The entity that
digitally signs a public key certificate is called a Certification Authority (CA)
whilst the entity that signs an AC is called an Attribute Authority (AA). The
root of trust of a PKI is sometimes called the root CA – which in terms of
the UK e-Science community is given by the Grid Support centre at RAL [13].
The root of trust of the PMI is called the source of authority (SOA). CAs may
have subordinate CAs whom they trust and to which they delegate the powers
of authentication and certification. Similarly, SOAs may delegate their powers

132 R. Sinnott et al.

of authorisation to subordinate AAs. If a user needs to have their signing key
revoked, a CA will issue a certificate revocation list. Similarly, if a user needs to
have authorisation permissions revoked, an AA will issue an attribute certificate
revocation list (ACRL). Typically, a given users’ access rights are held as access
control lists (ACLs) within each target resource. In an X.509 PMI, the access
rights are held within the privilege attributes of ACs that are issued to users.
A given privilege attribute within an AC will describe one or more of the user’s
s access rights. A target resource will then read a user’s AC to see if they are
allowed to perform the action being requested.

The Privilege and Role Management Infrastructure Standards Validation
(PERMIS) [15, 16]is a role based authorisation infrastructure that realises a
PMI – indeed the PERMIS project built and validated the world’s first X.509
attribute certificate based authorisation infrastructure. Role Based Access Con-
trol (RBAC) models have been designed to make access control manageable and
scalable [8]. To cater for RBAC solution for many applications, the PERMIS
access control module has been developed [6, 7]. It is a standards-based Java
API that allows developers of resource gateways (gatekeepers) to enquire if a
particular access to the resource should be allowed. PERMIS RBAC uses XML
based policies defining rules, specifying which access control decisions are to be
made for given VO resources [9]. These rules comprise:

– definitions of subjects that can be assigned roles;
– definitions of Source of Authority (SOA) - trusted to assign roles to subjects;
– definitions of roles and their hierarchical relationships;
– definitions of what roles can be assigned to which subjects;
– definitions of targets that are governed by the policy;
– the conditions under which a subject can be granted access.

The roles are assigned to subjects by issuing them with a standard X.509
Attribute Certificate [2]. The PERMIS team are currently working closely with
the Globus team to design a standard Security Assertion Markup Language
(SAML) [17] interface to any authorisation infrastructure. This will allow Grid
applications to plug and play any authorisation infrastructure. As a result, the
BRIDGES project has agreed to work with the PERMIS team and provide a
rigorous investigation of security authorisation in a Grid biomedical context.
Currently PERMIS has been extended with the SAML API and work is on-
going to extend Globus Toolkit version 3 with a similar API [21]. The expected
date for release of the extended GT3 is April 2004. Currently the BRIDGES
team is involved in defining suitable XML based policies suitable for the security
authorisation requirements of the CFG project consortia, and identifying policy
decision and enforcement points to be used when accessing the Grid services and
associated CFG specific data sets. We are also involved in discussions in how
remote CFG sites might make available their data sets in as secure a manner as
possible, without compromising their local security requirements, e.g. through
restricted and controlled opening of firewalls. Avenues incorporating existing
solutions like ssh/scp are being explored.

Development of a Grid Infrastructure for Functional Genomics 133

In addition to authentication and authorisation security aspects, a key re-
quirement of the CFG scientists is related to privacy. Privacy relates to the use
of data, in the context of consent established by the data owner. There is lit-
tle prior art in privacy Grid science, although there is useful UK background
in privacy including hospital systems [18]. Web based standards such as P3P
[19] may contribute to only a small fraction of the necessary security mecha-
nisms. The area of privacy of biomedical data will be investigated as work on
BRIDGES evolves.

4 Portal Technologies

There are various possibilities available for hosting the services to be made avail-
able to the CFG scientists. Given that user friendliness is a key aspect, develop-
ment of a project portal was made. This portal should provide a personalisable
environment that the scientist is offered to explore all of the (Grid related) soft-
ware, data resources and general information associated with the BRIDGES,
and hence the CFG projects. Portals in general offer several key advantages as
a hosting and delivery mechanism for Grid services. They are:

– Highly flexible and extensible solutions
– Support content and information delivery suitable to users role
– Standardized look and feel across application suite
– Single entry point for services, data resources

Arguably the most mature portal technology on the market and the mar-
ket leader is IBM WebSphere Portal Server, which has been used to develop
the BRIDGES portal, although we note that several other solutions were also
investigated including GridSphere [26] and the Commodity Grid toolkit [27].
WebSphere Portal Server runs as another layer on top of the highly developed
WebSphere Application Server. Since this provides a fully functional enterprise
Java hosting environment it is possible to deploy a Java based Grid service
instance within the same virtual machine container.

The BRIDGES portal is shown in Fig. 4. This portal provides an integrated
and personalisable environment through which the scientists have access to the
various Grid services that they need. This will include Grid data services for
the various information repositories of interest to the scientists; Grid services
for visualisation of genomic data sets, and Grid services for analysis of genomic
data sets. Currently the portal supports Grid enabled visualisation and analysis
tools. Work is on-going in development of the Grid data services making use of
the Data Hub and hence remote federated data sets.

Integral to the portal is security. The scientists have been issued (by the UK
e-Science Certification Authority) with X.509 certificates which are embedded
in their browsers. Depending upon the role of the portal user (e.g. scientist,
systems administrator, principal investigator etc) the X.509 certificate is used to
limit what services the portal user sees and subsequently is allowed to invoke. Of
course only certificates for scientists involved with the CFG virtual organisation

134 R. Sinnott et al.

Fig. 4. BRIDGES Portal

are recognised, hence non-authorised access to the portal and the services/data
sets available there is not possible. A generic mapping between certificates used
for authentication and certificates used for fine grained authorisation is currently
under development.

5 Grid Service Development

At the time of writing several trial-Grid services have been engineered and made
available through the BRIDGES portal. We describe each of these in turn.

5.1 Grid Enabled Synteny Visualisation Services

Synteny is the condition of two or more genes being located on the same chro-
mosome. Of particular interest to the CFG scientists is conserved synteny which
may be defined as the condition where a syntenic group of genes from one species
have orthologues (similar genes, where the similarity itself can be ascertained
through a combination of approaches such as protein sequence similarity, struc-
ture, function etc) in another species.

The analysis of conserved synteny between the different organisms (e.g. mouse,
rat and human), in combination with quantitative trait loci (QTL) data [28] and
microarray experiments, is one of the main methods used by the CFG scientists
in investigating hypertension. Their aim is to discover genes responsible for hy-
pertension in rat or mouse organisms and translate these findings into knowledge
about the mechanisms for hypertension in human. It should be noted that knowl-
edge of syntenic relationships and of known QTLs between organisms provides

Development of a Grid Infrastructure for Functional Genomics 135

Fig. 5. Grid Enabled Syntenic Visualisation Tool

supporting, but not necessarily guaranteed, evidence about the location and
functional role of candidate genes causing hypertension between species.

In displaying conserved synteny, two or more chromosomes need to be shown
simultaneously. SyntenyVista was developed for this purpose as shown in Fig. 5.
Originally SyntenyVista was developed under the assumption that the relevant
chromosome data sets were locally available, e.g. as files on the same machine
where SyntenyVista itself was running. This has numerous limitations. Firstly,
the user must manually download the relevant data sets, and possibly the com-
plete databases from public resources offering syntenic information, e.g. Ensembl
[29]. Secondly, each time the user wants to visualise syntenic data sets, they need
to manually check, e.g. by visiting the public data repository, whether a newer
more up to date version of their syntenic data set is available. Grid technology
offers a mechanism to overcome these restrictions, through automatically access-
ing and pulling down relevant remote data sets as and when needed. To achieve
this SyntenyVista has been augmented with OGSA-DAI capabilities. Specifi-
cally, SyntenyVista is now able to access remote syntenic data sources and pull
down (cache) them as needed. The portal delivery mechanism for SyntenyVista
itself is via Sun’s WebStart [30]. The Java WebStart technology simplifies de-

136 R. Sinnott et al.

ployment of Java applications and enables launch of full-featured applications
through single clicks from web browsers. Upon launching SytenyVista from the
portal, automatic checks are done to ensure that the latest version of the software
is available, and if not, automatically downloaded and installed.

The Grid enabled version of SyntenyVista automatically checks on syntenic
data sets that might have been cached already. When these are available, they
are loaded (onto the pallet on the left hand side of Fig. 5). Users are then able
to drag these onto the main window to see where synteny might be present
between different chromosomes. When these data sets are not cached locally,
remote resources accessible via OGSA-DAI are accessed and the data pulled
down. Currently the Grid data services for finding syntenic data sets are under
development, and as such the current implementation uses OGSA-DAI directly
to connect to a single syntenic data source (Ensembl).

5.2 Grid Enabling BLAST Services

Bioinformaticians typically need to be able to find similarities between different
genomic or protein sequences. The Basic Local Aligment Search Tool (BLAST)
[31] has been developed to perform this function. Numerous versions of BLAST
currently exist which are targeted towards different sequence data sets and offer
various levels of performance and accuracy metrics. Typically full scale BLAST
jobs across whole genomes is a highly compute intensive activity. As a result,
large scale compute farms are often required.

The ScotGrid computational resource at the University of Glasgow offers pre-
cisely such a high throughput compute facility [32]. It is the e-Science resource
at the University of Glasgow and represents a consolidation of resources across
a variety of research groups and departments. It is used by varieties of scientists
across the university and internationally including particle physicists, electronic
engineers, computer scientists and bioinformaticians. ScotGrid itself offers a Be-
owolf Linux cluster with the equivalent of 330 1GHz processors and 15TB disk
space comprised of IBM xSeries, Blade server, FAStT500 and Dell and Cisco
technologies. It uses the Maui scheduling software [33] which itself is a based on
OpenPBS [34].

To provide Grid enabled BLAST services accessing and using ScotGrid, it was
required that the BLAST software was ported into the Grid environment, i.e.
made available as a GT3 based Grid service. The original version of BLAST we
used was implemented in C hence this required writing appropriate Java wrap-
pers and exploiting specific GT3 APIs. The current prototype for GT3 BLAST
job submission is based on the GT3 core only, and involves a simple wrapper to
OpenPBS commands, due to difficulties with the full GT3 installation.

BLAST takes in a search sequence and assumes a target sequence database.
This requires that the source and target data sets were staged onto the ScotGrid
infrastructure, and the results pulled off once the job itself had completed. It
should be noted that in the current implementation, we simply keep a copy of
the relevant target database on ScotGrid, however it is expected that this solu-
tion will be modified once we deal with more security dependent data sets. Job

Development of a Grid Infrastructure for Functional Genomics 137

monitoring services based on usage of the OpenPBS API have also been imple-
mented. These Grid services and monitoring services are all available through
the BRIDGES portal and provide a valuable resource to the CFG scientists.

6 Conclusions

The BRIDGES project began in October 2003 and is engaged in the evaluation
of a wide variety of Grid technologies applied to the life science domain. Focus
thus far has been oriented towards, mainstream implementations of Grid tech-
nology such as Globus toolkit, and its recent web service based version (GT3).
GT3 usage has not been without issues however, and often workaround solu-
tions have been necessary. For example, full installation of GT3 with GRAM for
job submission/management capabilities was found to be especially problematic
due to undocumented operating systems dependencies. Further, since we often
required software to run on Windows OS flavours, e.g. for running WebSphere
portal software, compromises had to be made between the architecture and de-
sign, and the final systems that have been implemented.

The current implementation has provided a proof of concept prototype. The
next phase of the work will look in more detail at the key requirements of the
CFG scientists. For example, the scientists are especially interested in microar-
ray analysis. Tools and workflows that allow the scientists to take up/down
regulated gene names from microarray experiments and garner further infor-
mation are of special interest. This in turn requires that our Data Hub can
connect to relevant data sites to pull down specific information on the genes
themselves. The current focus of our Data Hub is on genome databases such
as Ensembl [29], GenBank [35]; gene function databases such as LocusLink
[36], OMIM [37], transcriptome databases such as Unigene [38], and relevant
publications databases such as PubMed [39] and MedLine [40]. Currently, few
of these resources provide the necessary programmatic access needed. Instead,
they often only offer compressed files that can be downloaded. As a result,
a local warehouse is being established and populated. This will make use of
both IBM’s Information Integrator technology and other Grid services, e.g. for
replica location management [41]. This will support automated, dynamic up-
dating of the local repository with remote, public data sets, as and when these
change.

There exist numerous other visualisation and analysis tools that the CFG
scientists would like to be supported and offered through the BRIDGES portal.
These include sequence visualisation tools and multiple alignment tools. Work
is currently on-going in Grid enabling these. Similarly, the scientists are keen
to use numerous analysis and sequence comparison tools such as clustalw [42]
and Smith-Waterman [43]. Their Grid enablement is also under way. We note
that not all scientific compute demands are satisfied by farms such as ScotGrid,
and often a large SMP machines are required. Where this is the case, large
SMP resources offered through the UK e-Science Grid such as Blue Dwarf at
Edinburgh University will be made.

138 R. Sinnott et al.

Finally a role based authorisation infrastructure meeting the needs of the
CFG scientists and their associated is under development. This will give valuable
insight into the much needed security concerns raised by rolling out the Grid to
the wider (life science) community.

Acknowledgements

This work was supported by a grant from the Department of Trade and Industry.
The authors would also like to thank members of the CFG team including Prof.
David Gilbert, Prof Malcolm Atkinson, Dr Ela Hunt and Dr Neil Hanlon. Drs
Hanlon and Hunt are also acknowledged for their contribution to the original
SyntenyVista software. Acknowledgements are also given to the IBM collabora-
tors on BRIDGES, notably Drs David White, Andy Knox and Jean-Christophe
Mestres. The CFG project is supported by a grant from the Wellcome Trust
foundation.

References

1. Cardiovascular Functional Genomics project, http://www.brc.dcs.gla.ac.uk/
projects/cfg/

2. BioMedical Research Informatics Delivered by Grid Enabled Services (BRIDGES),
www.brc.dcs.gla.ac.uk/projects/bridges

3. Open Grid Service Architecture – Data Access and Integration project (OGSA-
DAI), www.ogsadai.org.uk

4. IBM Information Integrator, http://www3.ibm.com/solutions/lifesciences/
solutions/Information Integrator.html

5. E-Science Security Roadmap: Technical Recommendations v0.5, UK e-Science Se-
curity Task Form, draft executive summary v0.51

6. ITU-T Rec. X.509 (2000) — ISO/IEC 9594-8 The Directory: Authentication
Framework

7. C Adams and S Lloyd (1999), Understanding Public-Key Infrastructure: Concepts,
Standards, and Deployment Considerations, Macmillan Technical Publishing.

8. Adams, C., Lloyd, S. (1999). “Understanding Public-Key Infrastructure: Con-
cepts, Standards, and Deployment Considerations”, Macmillan Technical Publish-
ing, 1999

9. Austin, T. “PKI, A Wiley Tech Brief”, John Wiley and Son, ISBN: 0-471-35380-9,
2000

10. Grid Security, https://forge.gridforum.org/projects/sec
11. L Pearlman, et al., A Community Authorisation Service for Group Collaboration,

in Proceedings of the IEEE 3rd International Workshop on Policies for Distributed
Systems and Networks. 2002.

12. M Thompson, et al., Certificate-Based Access Control for Widely Distributed Re-
sources, in Proc 8th Usenix Security Symposium. 1999: Washington, D.C.

13. VOMS Architecture, European Datagrid Authorization Working group, 5.9.2002.
14. Steven Newhouse, Virtual Organisation Management, The London E-Science cen-

tre, http://www.lesc.ic.ac.uk/projects/oscar-g.html

Development of a Grid Infrastructure for Functional Genomics 139

15. D. Chadwick and A. Otenko. The PERMIS X.509 role based privilege management
infrastructure, in Proceedings of the Seventh ACM Symposium on Access Control
Models and Technologies, Monterey, California, USA. 2002.

16. Privilege and Role Management Infrastructure Standards Validation project
www.permis.org

17. P Hallem-Baker, E Maler, Assertions and Protocol for the OASIS Security Asser-
tion Markup Language (SAML), OASIS, SAML 1.0 Specification. 31 May 2002.
http://www.oasis-open.org/committees/security/#documents

18. I. Denley and S.W. Smith, Privacy in clinical information systems in secondary
care. British Medical Journal, 1999. 318: p. 1328-1331.

19. Platform for Privacy Preferences (P3P) Project, W3C, http://www.w3.org/P3P/
20. Data Access and Integration Services working group, https://

forge.gridforum.org/projects/dais-wg
21. Global Grid Forum, www.ggf.org
22. Grid Data Service Specification, https://forge.gridforum.org/docman2/

ViewCategory.php ?group_id=49&category_id=517
23. Apache web site, www.apache.org
24. Web Security Standards, http://www.oasis-open.org/committees/

documents.php?wg_abbrev=wss
25. UK e-Science Engineering Task Force, www.grid-support.ac.uk/etf
26. GridSphere Portal, www.gridsphere.org
27. Commodity Grid toolkit, www-unix.globus.org/cog
28. An Overview of Methods for Quantitative Trait Loci (QTL) Mapping, Lab

of Statistical Genetics, Hallym University, http://bric.postech.ac.kr/webzine/
content/review/indivi/2002/Aug/ 1_08_index.html

29. EMBL-EBI European Bioinformatics Institute, http://www.ebi.ac.uk/ensembl/
30. Sun WebStart Technology, http://java.sun.com/products/javawebstart/
31. Basic Local Alignment Search Tool (BLAST), http://www.ncbi.nlm.nih.gov/

Tools/
32. ScotGrid, www.scotgrid.ac.uk
33. Maui Job Scheduler, http://www.supercluster.org/maui/
34. Open Portable Batch System, www.openpbs.org
35. NCBI GenBank, http://www.ncbi.nlm.nih.gov/Genbank/
36. NCBI LocusLink, http://www.ncbi.nlm.nih.gov/LocusLink/
37. NCBI Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/

OMIM/
38. NCBI Unigene, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
39. PubMed Central Home, http://www.pubmedcentral.nih.gov/
40. US National Library of Medicine, http://www.nlm.nih.gov/
41. Replica Location Service (RLS), www.globus.org/rls
42. EMBL-EBI European Bioinformatics Institute clustalw, http://www.ebi.ac.uk/

clustalw/
43. EMBL-EBI European Bioinformatics Institute MPSrch, http://www.ebi.ac.uk/

MPsrch/

Building a Biodiversity GRID

Andrew C. Jones1, Richard J. White1, W. Alex Gray1, Frank A. Bisby2,
Neil Caithness2, Nick Pittas1, Xuebiao Xu1, Tim Sutton2, Nick J. Fiddian1,

Alastair Culham2, Malcolm Scoble3, Paul Williams3, Oliver Bromley4,
Peter Brewer2, Chris Yesson2, and Shonil Bhagwat3

1 Cardiff University, School of Computer Science, Queen’s Buildings,
5 The Parade, Cardiff CF24 3AA, UK

{Andrew.C.Jones, R.J.White, W.A.Gray, N.Pittas, X.Xu,
N.J.Fiddian}@cs.cardiff.ac.uk

2 Centre for Plant Diversity & Systematics, School of Plant Sciences,
The University of Reading, Reading RG6 6AS, UK

{F.A.Bisby, N.Caithness, T.Sutton, A.Culham, P.W.Brewer,
C.Yesson}@reading.ac.uk

3 Department of Entomology,
The Natural History Museum, London SW7 5BD, UK

{M.Scoble, P.Williams, S.Bhagwat}@nhm.ac.uk
4 School of Biological Sciences, University of Southampton,

Southampton SO16 7PX, UK
O.Bromley@soton.ac.uk

Abstract. In the BiodiversityWorld project we are building a GRID
to support scientific biodiversity-related research. The requirements as-
sociated with such a GRID are somewhat different from other GRIDs,
and this has influenced the architecture that we have developed. In this
paper we outline these requirements, most notably the need to inter-
operate over a diverse set of legacy databases and applications in an
environment that supports effective resource discovery and use of these
resources in complex workflows. Our architecture provides an invocation
model that is usable over a wide range of resource types and underlying
GRID middleware. However, there is a trade-off between the flexibility
provided by our architecture and its performance. We discuss how this
affects the inclusion of computationally intensive applications and appli-
cations that are highly interactive; we also consider the broader issue of
interoperation with other GRIDs.

1 Introduction

Biodiversity informatics is developing as a distinct part of the field of bioin-
formatics. Many bioinformatics researchers concentrate on the proteomic and
functional aspects of molecular sequence data. In contrast, the emphasis of bio-
diversity informatics is on the diversity of organisms and the evidence available
to explore their interactions and relationships, their past history, and what might
happen in the future. Molecular sequence data is still relevant, as one of many

pp. 140–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

Building a Biodiversity GRID 141

factors, but in this context one is typically interpreting the data as historical
evidence of phylogenetic relationship, rather than interpreting it functionally.
Many relevant, diverse kinds of data sets have been assembled, and many an-
alytic tools have been created for specific purposes. It is now being recognised
that new scientific questions could be investigated if it were possible to interop-
erate over such resources, assembling workflows that use them. In this paper we
discuss some aspects of the BiodiversityWorld (BDW) project, which is building
a biodiversity GRID that provides the interoperation we require, and we concen-
trate particularly upon the architecture we are adopting and the implications of
this for the ways in which BDW applications may be structured.1

We commence by describing the project background, providing information
about the application domain and relevant GRID developments. We then consider
the distinct requirements associated with a biodiversity GRID, following which we
explain the architecture that we have adopted to meet our requirements, and its
implications. In the concluding section we describe the current project status and
outline the ways in which we intend to develop BDW in the future.

2 Background

2.1 Application Domain

In the BDW project we have selected three exemplar biodiversity research ar-
eas to drive the development of our biodiversity GRID. These areas have been
selected to fall within the team’s areas of expertise, and to be representative of
tasks that one might typically wish to perform using a biodiversity GRID. These
research areas are as follows:

1. Bioclimatic and ecological niche modelling. This is a two step procedure.
First, a climate preference profile is produced by cross-referencing the known
localities of a species with present day climate data. This climatic preference
is then used to locate other areas where such a climate exists indicating areas
which are climatically suitable for the species, using present day climate data
(e.g. to identify areas under threat from invasion by invasive species), or using
climate model predictions for either the future or the past (e.g. to predict
the possible effects of global climate change on the species distribution).
Relevant existing modelling algorithms for this research include GARP (Ge-
netic Algorithm for Rule-set Production) and CSM (Climate Space Model);
we also need to be able to visualise the climate preference profiles and species
distributions. Suitable species distribution data is required, and a catalogue
of life such as that provided by Species 20002 can help in selecting suitable
species names for querying the distribution data.

1 BDW is one of a number of current e-Science projects funded by the UK Biotech-
nology and Biological Sciences Research Council (BBSRC). For an overview of these
projects see [1].

2 http://www.sp2000.org/

142 A.C. Jones et al.

2. Biodiversity modelling and the prioritisation of conservation areas. This task
involves using species distribution data in order to produce a species richness
map, and then using it as a basis for proposing priority areas for biodiversity
conservation. As a test study, we are using a database of Canadian butterflies,
provided by the Canadian Biodiversity Information Facility (CBIF)3, and we
are using Worldmap4 to perform the biodiversity modelling.

3. Phylogeny and palaeoclimate modelling. The purpose of phylogenetic analy-
sis is to reconstruct the most likely model of historical relationships among
species and to use this to explore scenarios that have led to the diversity
we see. Typical applications of such an approach are to integrate multi-
ple genome data to interpret certain kinds of changes (morphological or
cytological) during evolution [2]. Recent developments in phylogenetic re-
construction, and calibration of phylogentic trees against time, allow the
exploration of the role of climate change in diversification of species through
palaeohistory. The intention is to operate two converging streams of activ-
ity once the taxon set5 has been established. The purpose of stream one
is to automate data gathering from the global DNA sequence databases
EMBL6/GenBank/DDBJ, enable sequence alignment and convert this to
files ready for data analysis. We wish to perform analysis through a choice
of proprietary software, leading to the output of phylogenetic trees. The
purpose of stream two is to gather distribution data for these taxa and fit
climate models to each taxon. These streams need to converge so that newly
developed software can optimise the climate variables across the phylogenetic
tree to give palaeoclimate scenarios through evolutionary time. When fully
implemented, these scenarios can be cross-referenced to global palaeoclimate
models for comparison. Simultaneous optimization of DNA sequence-based
phylogeny, palaeoclimate and geographical data will allow, for the first time,
explicit scientific interpretation of the role of climate in the evolution of
biodiversity.

At present, tasks such as those enumerated above require substantial manual
work on the part of the scientist. This is perhaps particularly evident in task (3).
Current working practice is generally to bring prepared datasets to a software
package (e.g. SAS for statistical analysis; PAUP for phylogenetic analysis) and
to use the suite of proprietary analytical options made available in that package.
Using a sequence of analytical tools selected from different packages is usually
difficult as the data needs to be prepared in different ways, and most relevant
software packages were not designed with this kind of use in mind.

A workflow-based approach to link tools in an analytic pathway, such as
we adopt in BDW, provides a means of planning and executing complex tasks
within a uniform environment. Furthermore, changes to these tasks (e.g. to use a

3 http://www.cbif.gc.ca/portal/digir-toc.php
4 http://www.nhm.ac.uk/science/projects/worldmap/index.html
5 Such as a set of species.
6 http://www.ebi.ac.uk/embl/

Building a Biodiversity GRID 143

Fig. 1. A bioclimatic modelling workflow

different analytic tool) can easily be achieved. To illustrate the complexity of the
above tasks, consider one aspect – phylogenetic analysis. This may include mul-
tiple sequence alignment, phylogenetic inference by several competing methods,
followed by a comparison of results. This is a tedious task at present, involving
up to a dozen competing and incompatible packages. In BDW we are making
such packages available in a mutually compatible way, as ‘resources’ that can be
discovered and assembled into workflows meeting the user’s requirements.

To further illustrate typical biodiversity-related tasks, consider Fig. 1. This
figure illustrates a bioclimatic modelling workflow, and is one of the workflows we
have currently implemented in BDW. In step 1, a scientific name is submitted
to the SPICE catalogue of life and a list of alternative names for the chosen
species is retrieved; in step 2, these names are used to retrieve distribution maps
for specimens having any of these alternative names; in step 3, climate surfaces
describing climate world-wide are retrieved; in step 4, these climate surfaces and
distribution maps are used to generate a model of climatic conditions where
the chosen species is currently found; in step 5, climate surfaces are used in
conjunction with the generated climate space model to predict suitable regions
for the species of interest, and in step 6, this prediction data is overlaid on a
map of the world or some geographical region. Note that in step 5 we might use
different climate surfaces from those used in step 3: for example, we might use
predicted climate to assess the possible effects of climate change.

2.2 The GRID

Much of GRID research has focussed upon making large amounts of computa-
tional power readily available (see, e.g., [3]). But another important aspect of
building a usable GRID is the ability to discover and reason with information
in sophisticated ways. This is implied by the three levels (Data; Information;
Knowledge) proposed by Jeffrey [4] and, to a certain extent, by the Knowledge

144 A.C. Jones et al.

Grid [5]. This need has been recognised at a rudimentary level by the intro-
duction of the Open Grid Services Architecture (OGSA) [6] and, more recently,
by the Web Services Resource Framework (WSRF)7. But there is still much
room for research into the effective use of metadata and ontologies within a
GRID environment, particularly in our application area. Also, GRID software
such as Globus is evolving rapidly, without maintaining full backward compat-
ibility: this is a significant problem if a GRID that includes a large number
of heterogeneous resources and tools is to be maintainable. Some projects are
looking at the metadata & ontology problem in a context partially related to
BDW (such as myGRID8). But one of the major goals for BDW is to address
all the problems identified in the present section sufficiently well for it to be
possible for an extensible biodiversity GRID to be developed and effectively
maintained.

3 Biodiversity GRID Requirements

The nature and diversity of the resources to be used, and the kinds of problems
that we wish to help scientists solve, present challenges to the effective man-
agement and use of resources within a biodiversity GRID. In relation to data
sources, notable requirements are as follows:

– For some of the tasks of interest, such as bioclimatic modelling, our GRID
must facilitate the use of a wide range of different kinds of data in a seamless
manner.

– We need to support data source heterogeneity: for example, various database
management systems have been used – indeed, several data sources are not
held in database management systems, but merely in files – and data rep-
resentation and structure will vary. The services which database owners are
willing to publish will also vary: some databases may provide direct query-
ing against a known schema; others provide only a small set of operations
that map onto ‘canned queries’. Many of the databases of interest have been
built for very specific purposes, which may be very different from how we
would like to use them in BDW, and these purposes have influenced the
design, both in terms of what information is stored and the organisation
of this information. This contrasts sharply with many important data sets
in other disciplines, which are frequently stored in agreed formats in public
repositories.

– Data may vary in ways relating to scientific opinion. For example, not all
scientists may use the same scientific name to refer to a given species, and
scientific opinion may differ as to the circumscription (i.e. the boundaries of
variation) of a species. So resources holding knowledge to assist in accurate
retrieval are needed.

7 http://www.globus.org/wsrf/
8 http://www.mygrid.org.uk

Building a Biodiversity GRID 145

– Some data are sensitive, such as detailed distribution information for rare
species. Precise, dependable access control is therefore required to ensure
that users see only the data to which they are entitled to have access.

In relation to analytic tools, various related requirements arise, including:

– Certain tools were written to solve very specific problems and assume data
input/output in proprietary formats. We need to be able to accommodate
these formats within our interoperation framework, applying appropriate
transformations where necessary.

– We wish to make use of ‘packages’ such as those described in Section 2.1,
in which a task that may be required is deeply embedded in a framework
intended primarily, or solely, for access via a proprietary user interface.

– We want to support interaction with analytic tools of a range of types
(command-line based; tools provided as program libraries; commercial and
scientific packages as described in the previous requirement; open source
code; etc.) within our architecture where possible. Where this is impracti-
cable (e.g. a system may assume that the user will interact via a GUI on a
particular platform and the effort involved in building software to simulate
such a user is unjustifiable), sensible ways of using such external tools must
be devised.

A further requirement is that it is essential for the composition of work-
flows, which bring resources together in flexible and powerful combinations, to
be fundamentally efficient and straightforward for biodiversity application users
to undertake readily themselves. This has implications for the HCI aspects of
the user interface design (which we intend to discuss in a future paper), but also
for the architecture of BDW, especially in regard to the provision of suitable
metadata.

Thus, it is necessary to provide an architecture and middleware that support
the above requirements. Moreover, because of the investment of time that is
inevitably required in order to make these resources available within our GRID,
the middleware must insulate our GRID from changes that may occur as the
underlying GRID software (such as Globus) evolves.

4 Meeting the Requirements

4.1 BiodiversityWorld Architecture

An early proof-of-concept system was developed by some of the authors of this
paper in order to explore the possibilities for using Globus software as the basis
for a biodiversity GRID. The resulting software, GRAB (GRid And Biodiver-
sity), was capable of performing some tasks relating to bioclimatic modelling,
but in a fixed workflow with a limited set of resources. In Globus Toolkit 2
it was found that the facilities provided did not lend themselves well to im-
plementation of services of the kinds needed in a biodiversity GRID [7]. These

146 A.C. Jones et al.

Fig. 2. BiodiversityWorld environment. 1: User exploits a wide range of facilities pro-
vided by the e-Science gateway, which can be extended to accommodate new resources,
etc; 2: Resource discovery makes use of a metadata repository, in which resources are
registered; 3: Resources of importance to Biodiversity Informatics include a Taxonomic
Index (catalogue of names); biotic resources (containing information about organisms),
and abiotic resources (containing other relevant information, e.g. climate data); 4: An-
alytic tools are also needed to form a problem-solving environment for biodiversity
informatics

limitations, the requirements mentioned in the previous section, and the evolv-
ing nature of GRID software identified in Section 2.2, implied that a middleware
layer providing a suitable invocation mechanism and insulating resources from
the underlying GRID was required to provide a suitable interoperation frame-
work for the subsequent BiodiversityWorld project. The environment in which
resources are made available, and the elements of a typical interaction with the
system, are illustrated in Fig. 2. The architecture we have adopted in order to
achieve this interoperability is illustrated in Fig. 3. It has the following elements:

– The abstraction layer, which we refer to as the BiodiversityWorld-Grid In-
terface (BGI). This layer specifies a Java software interface that all resources
must conform to, but the interface between this layer and the GRID is
custom-built for whatever GRID software is being used at the time. The
BGI provides an invocation mechanism and assumes that data is serialised
for transmission, typically using XML;

Building a Biodiversity GRID 147

Fig. 3. BiodiversityWorld architecture

– Resource wrappers, where necessary, to wrap the resources to conform to the
BGI and publish metadata concerning operations and associated data types
supported by each resource, the nature and location of each resources, etc. It
is a wrapper’s responsibility to invoke the relevant operations on a resource,
de-serialising the data that is to be used by that resource;

– A metadata repository, which holds this published metadata in order to sup-
port resource discovery and resource use within workflows. This repository
is accessed via the BGI, as other resources are;

– A workflow enactment engine that can communicate via the BGI with re-
sources as required;

– Presentation modules, and
– A user interface which provides facilities for workflow design, visualisation

of results, etc.

This architecture is intended to be suitable for the kinds of scenarios envis-
aged for BDW. More detail of the BDW architecture may be found in [8, 9]. In the
present paper we shall now concentrate on some important implications of having
adopted this architecture that were not discussed in our earlier publications.

4.2 Implications of the BiodiversityWorld Architecture

There are a number of implications of the BDW architecture, with regard to how
resources may be wrapped for use in BDW; how we may structure applications
that are computationally intensive; how to support highly interactive applica-
tions; and how we can interoperate with other GRIDs. We shall consider each
of these in turn.

148 A.C. Jones et al.

Wrapping resources. There is a variety of ways in which resources can be made
compliant with the BGI. As originally conceived, one of the main challenges for
BDW was to make interoperation possible among resources that already existed
and were highly heterogeneous. For these kinds of resource, wrapping them to
conform to some uniform specification is essential in order to make the BDW
architecture manageable. For resources to be wrapped using Java we have split
wrappers into two parts with a standard interface defined between them. The
resource-facing wrapper component performs all the resource-specific wrapping
tasks; while the GRID-facing wrapper component performs the tasks specific
to our chosen GRID implementation. This latter component is identical for all
resources wrapped for a given GRID infrastructure; it could be replaced by
instances of a component supporting a new GRID infrastructure if required,
without necessitating changes to the resource-facing wrapper components.

Further re-usability has been achieved by noting that one particular class of
resource is those resources that are normally invoked from the command line.
At present we have implemented a number of distinct wrappers for these re-
sources, but this is an obvious example of where some wrapper genericity can be
achieved: we have implemented, and are currently testing, such a wrapper. But
another important class of resource is those that are being newly implemented.
We see this as an opportunity to implement software that directly conforms to
the BGI, with no wrapping as such being needed. In contrast with the forego-
ing resource types, an alternative way of implementing resources is to design
them to operate with some specific implementation of the BGI. For example,
an OGSA-based GRID service could be incorporated if an OGSA version of the
BGI were being used. This has the advantage that, if necessary, the entire re-
source could be implemented in some language other than Java; it also has the
obvious disadvantage that the resource will only be compatible with one spe-
cific implementation of the BGI. But the main point arising from these differing
resource types is that we are not restricted to a single way by which resources
can be integrated into BDW: we can choose the most appropriate technique for
individual circumstances.

Computationally intensive applications. It will be clear that our architecture
has communications overheads when compared with architectures that make di-
rect use of efficient mechanisms (for example, using GridFTP for data transfer).
We have not as yet assessed the precise magnitude of the performance penalty,
but it is obvious that this penalty will be significant for distributed applications
requiring high bandwidth. But this performance penalty is a consequence of an
architectural design which has benefits that are important in a situation like
ours, where interoperation among a large number of heterogeneous resources is
required, and maintainability of the system as GRID software evolves is impor-
tant. Also, though some tasks relating to biodiversity studies are computationally
intensive, they tend to be self-contained – for example, climate surface genera-
tion for bioclimatic modelling can be carried out as an independent task, given
appropriate input data. Accordingly we assume that any computationally inten-
sive task will be carried out within a single resource, as seen by the BDW system,

Building a Biodiversity GRID 149

even if the resource is actually distributed over a cluster of computers. This ap-
proach is not dissimilar to that taken in the WhyWhere9 project, although it
should be understood that WhyWhere is narrower in focus than BDW – it is a
system specifically for reasoning with specimen location data and environmental
data. In WhyWhere, high-performance GRID technologies are used to process
the environmental data, but a separate mechanism is used to access the species
data; hence, as in BDW, the high-performance computing tasks are partitioned
off. If this approach should prove inadequate in some special circumstances, we
shall have to consider some special high-throughput extension to our architec-
ture, something we may also have to consider for highly interactive applications
as we shall now see.

Highly interactive applications. In most cases, interaction with a resource
within BDW can be fairly coarse-grained – typically a small number of operations
will be invoked on any given resource within an individual workflow, and each
operation performs a fairly substantial task. But there are still two important
problems to address:

– How can we make use of stand-alone applications that were intended for use
via an integrated GUI on a particular platform, if we have no access to the
source code or to some programmatic interface to the application? And

– If an extended sequence of interactions with a given resource is envisaged,
where data will need to be transferred between the client and the resource
rapidly in order to achieve good response, how can this be achieved?

We see a number of possibilities for dealing with these problems:

– A stand-alone application could be wrapped for use within BDW in the usual
way, the wrapper in this case being fairly complex in that it would have to
simulate user interactions with a running version of the application.

– The stand-alone application could either be installed on the user’s machine,
or controlled remotely using software such as VNC, and conventions for
depositing data and retrieving data by BDW and the application software
could be established. For example, BDW may gather all the data to be used
by an analytic tool, store it in specified files on the user’s machine, and then
the user runs the analysis tool him/herself.

– Interaction with resources could be achieved using the above technique, or a
commonly-needed set of interactive tasks could be implemented on the client
side, within the BDW user interface itself.

– Another way to provide high throughput is to extend BDW with an alter-
native data transfer mechanism dependent directly on the underlying GRID
software in use at the time. Effectively this would allow programmers to
by-pass the layered architecture of BDW and, in so doing, to gain more
efficiency. This would be at the expense of portability, but it may be consid-
ered worthwhile – for a small, selected number of resources – to accept this
restriction.

9 http://biodi.sdsc.edu/ww home.html

150 A.C. Jones et al.

None of these approaches is perhaps ideal, but the general point that this
section illustrates is that any given GRID architecture has its strengths and
weaknesses, and that if (as in our case) performance is sacrificed for interop-
erability, on the grounds that performance is not usually the main problem in
a given application domain, there are still work-rounds which can address the
performance issue where necessary.

Interoperation with other GRIDs. An attractive aspect of our architecture
is that it provides a means of using resources from other GRIDs: they can be
wrapped as resources for our own GRID. To some extent it would also be pos-
sible for other GRIDs to interoperate with a given deployment of ours (e.g. an
OGSA- or WSRF-based version), because the resources are published as GRID
services. These kinds of interaction are important, because other projects – such
as myGRID – are developing resources that are of interest to biodiversity re-
search and, conversely, facilities available through BDW – such as the catalogue
of life – hold information that is of benefit for effective retrieval of bioinformatics
information.

5 Current Status and Conclusions

At the time of writing we have implemented a number of prototypes, mostly
concentrating on the bioclimatic modelling task. We have two implementations
of the BGI, namely a Java RMI-based version and an OGSA-based version.
This plurality of BGI implementations gives us some confidence that the BGI is
indeed ‘GRID’ infrastructure-independent. From the point of view of the BDW
project either of these implementations is acceptable, although the OGSA-based
version has the advantage for interaction with other GRID-based projects that
it is based on a recognised standard.

A representative range of bioclimatic modelling-related resources have been
incorporated into the system: some of these, such as the Species 2000 catalogue
of life, are of general use within BDW, rather than being specific to biocli-
matic modelling. We have been using a proprietary workflow enactment en-
gine, but are currently in the process of adapting Triana10 to meet our needs.
An initial prototype using Triana is now available. An embryonic metadata
repository is currently in place. We are currently in the process of incorpo-
rating resources to support the other two scenarios listed in Section 2.1, so
that scientific research using BDW in all three application areas can commence
soon.

In this paper we have discussed the need for a biodiversity GRID, to support
biological research that is generally outside the normally-recognised scope of
bioinformatics. We have seen that the requirements for a biodiversity GRID
have led to a distinctive design, intended to insulate large numbers of resources
from infrastructure change, and that this contributes to the maintainability of
our system. We have also seen that our architecture makes interoperability with

10 http://www.triana.co.uk/

Building a Biodiversity GRID 151

other GRIDs feasible: BDW is therefore a step towards the realisation of the
concept of a ubiquitous GRID.

Acknowledgements

The BiodiversityWorld project is funded by a research grant from the UK Biotech-
nology and Biological Sciences Research Council (BBSRC). The GRAB project
was funded by a grant from the UK Department of Trade and Industry (DTI).

References

1. Gray, W., Thompson, C.: Bioinformatics and eScience. In Cox, S.J., ed.: Proc. UK
e-Science All Hands Meeting, Nottingham, UK, EPSRC (2003) 66–71

2. Bakker, F., Culham, A., Hettiarachi, P., Touloumenidou, T., Gibby, M.: Phylogeny
of Pelargonium (Geraniaceae) based on DNA sequences from three genomes. Taxon
53 (2004) 17–28

3. Foster, I., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, CA (1999)

4. Jeffery, K.G.: GRIDs in ERCIM. ERCIM News (2001)
5. Cannataro, M., Talia, D.: The knowledge grid. Communications of the ACM 46

(2003) 89–93
6. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the Grid:

An open Grid services architecture for distributed systems integration. (2002)
http://www.globus.org/research/papers/ogsa.pdf.

7. Jones, A.C., Gray, W.A., Giddy, J.P., Fiddian, N.J.: Linking heterogeneous biodi-
versity information systems on the GRID: the GRAB demonstrator. Computing
and Informatics 21 (2002) 383–398

8. Jones, A., White, R., Pittas, N., Gray, W., Sutton, T., Xu, X., Bromley, O., Caith-
ness, N., Bisby, F., Fiddian, N., Scoble, M., Culham, A., Williams, P.: Biodiversity-
World: An architecture for an extensible virtual laboratory for analysing biodiversity
patterns. In Cox, S.J., ed.: Proc. UK e-Science All Hands Meeting, Nottingham,
UK, EPSRC (2003) 759–765

9. White, R., Bisby, F., Caithness, N., Sutton, T., Brewer, P., Williams, P., Culham,
A., Scoble, M., Jones, A., Gray, W., Fiddian, N., Pittas, N., Xu, X., Bromley, O.,
Valdez, P.: The BiodiversityWorld environment as an extensible virtual laboratory
for analysing biodiversity patterns. In Cox, S.J., ed.: Proc. UK e-Science All Hands
Meeting, Nottingham, UK, EPSRC (2003) 341–344

Mega Process Genetic Algorithm
Using Grid MP

Yoshiko Hanada1, Tomoyuki Hiroyasu2,
Mitsunori Miki2, and Yuko Okamoto3

1 Graduate School, Department of Knowledge Engineering and
Computer Sciences, Doshisha University,

610-0321 Kyoto, Japan
hanada@mikilab.doshisha.ac.jp

2 Department of Knowledge Engineering and Computer Sciences,
Doshisha University, 610-0321 Kyoto, Japan
{tomo@is, mmiki@mail}.doshisha.ac.jp

3 Department of Theoretical Studies Institute for Molecular Science,
Okazaki, Aichi 444-8585, Japan

okamotoy@ims.ac.jp

Abstract. In this study, a new Genetic Algorithm (GA) using the Tabu
· Local Search mechanism is proposed. The GA described in this paper
is considered a Mega Process GA, which has an effective mechanism to
use massive processors, i.e., Mega Processors, in large-scale computing
systems. Our proposed method has a GA-specific database that pos-
sesses information of searched space and performs a local search for the
space that is not searched. Such mechanisms enable us to comprehend
the quantitative rate of a searched region during the search. Using this
information, the searched space can be expanded linearly as the number
of computing resources increases and the exhaustive search is guaranteed
under infinite computations. The proposed GA was applied to numerical
test functions and the energy minimization problems of protein tertiary
structures. The latter problem was performed under a heterogeneous
distributed computing environment, which was built up with Grid MP
produced by United Devices Inc.

1 Introduction

Genetic Algorithms (GAs) are among the most effective approximation algorithms
for optimization problems[1]. Various mechanisms for improving GAs have been
discussed. Minimal Generation Gap (MGG)[2] was proposed as a generation al-
ternation model. Methods using Linkage Identification[3, 4], Real-coded GA[5],
Probabilistic Model-Building GAs[6, 7], and Distributed GA[8] are other GAs that
have strong search capabilities. The restart mechanisms have also been applied to
enhance the performance of GAs[9, 10, 11, 12]. However, application of a GA to
solve optimization problems has the drawback that GAs incur large computing
costs. One solution to this problem is to perform GAs in parallel. In recent decades,

pp. 152–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

Mega Process Genetic Algorithm Using Grid MP 153

due to the remarkable improvements in computing capabilities, some parts of the
drawback regarding computing costs of GAs are not really important. Further-
more, parallel processing is used to yield increases in performance of GAs. Re-
cently, because of the emergence of super PC clusters and Grid computation en-
vironments, such as PC Grid comprised of desktop machines for home use or of-
fices, the number of computational calculation resources is increasing. Thus, large
computing projects in fields relating to evolutionary computing have become fea-
sible. GAs are well suited to parallel processing environments due to the ability
to search with multiple points, and consequently GAs have found application in
large-scale computing[13, 14, 15, 16]. However, adapted methods are mostly simple
parallelization of conventional GAs, which have been proposed for limited comput-
ing resources and an effective mechanism to make use of huge computing resources
have yet to be designed. The easiest way that is commonly used for conventional
GAs to use many resources is to increase the population size. However, enlarging
the population also increases the diversity of the solutions, i.e., the convergence
speed becomes slow. Subsequently, when GAs use a large amount of computer re-
sources, the optimum solution is not derived quickly. At the same time, for con-
ventional GAs, there is no guarantee of an exhaustive search in all search space
although infinite computations are performed. As a result, although simple paral-
lelization is applied to these methods, there is no assurance of improvement of their
performance in accordance with the increase in available computing resources.

In this study, a new GA using the Tabu · Local Search mechanism for large-scale
computer systems is proposed. We call such a GA using huge computing resources
a Mega Process GA and our approach is to develop an effective mechanism to use
massive processors, i.e., Mega Processors, in large-scale computing systems, such
as super PC clusters and Grid computation environments. The proposed method
uses a database that possesses information of space that has been searched already.
At the same time, the proposed GA performs the local search for the space that is
not searched to expand the searched space. These mechanisms enable us to com-
prehend the quantitative rate of the searched region during the search. Moreover,
using this information, the searched space increases linearly as the number of com-
puting resources increases and an exhaustive search is guaranteed under infinite
computations. In addition, we examined the performance of the proposed method
in a distributed computing environment, which is built up using the commercially
available PC Grid middleware Grid MP that is currently used to develop several
large-scale distributed computing projects produced by United Devices Inc1.

2 Tabu · Local Search Mechanism for Mega Process GA

2.1 Database Structure

In this study, we introduce a GA-specific database that possesses information of
the region that has already been searched. We used binary-coded individuals. In

1 United Devices : http://www.ud.com

154 Y. Hanada et al.

Fig. 1. An Example of an Individual stored in a Database

Fig. 2. The Aspect of the Database of the proposed method

addition to chromosomes, individuals stored in the database possess bitstrings,
which we call maskstrings. Maskstrings are also bitstrings, lengths of which are
the same as those of chromosomes. A locus of a chromosome, which stands at ’1’
in a maskstring, represents that it has already searched all assignable genes to
it. Fig. 1 shows that a set of searched individuals is compressed to one individual
using a maskstring.

Our proposed database stores these individuals that hold maskstrings. Fig. 2
shows an instance of the database. The individual x3, stored in the database
shown in Fig. 2 implies that ”0 1 1 1 1” is the best solution under searching
the set of individuals X3 = {0 * * 1 *}(* = 0 or 1). We call the number of ’1’
in a maskstring the hamming-index, e.g. the hamming-index of the individual
x3 is 3.

When a database stores all the individual information, it takes a large time
to check an individual that has been already searched due to its vast amounts
of data. Our proposed notation of searched individuals is a highly compressed
method using maskstrings and large searched regions are represented by several
individuals. Moreover, checking individuals stored on the database is not time-
consuming.

This notation of individuals enables us to provide a quantitative rate of a
searched region during a search. In an individual x we denote its chromosome
length by L, a gene of the locus l of a chromosome by cxl, and a value of the locus
l of a maskstring by mxl. Quantitative sizes of searched regions are obtained as
follows.

Mega Process Genetic Algorithm Using Grid MP 155

Case of one Individual. |X| denotes a number of elements involved in a set
X. The size of the searched region is indicated by an individual of which the
hamming-index standing at h is 2h, e.g., |X3|, which is the size of the searched
region indicated by the individual x3 stored in the database shown in Fig. 2,
as 23.

Case of N Individuals. Given N individuals xi(1 ≤ i ≤ N) and their search
regions Xi, the total searched region indicated by them is the union of sets
|X1 ∪ X2 ∪ · · · ∪ XN |, i.e., | ⋃i∈I Xi|, where the set which consists of the suffix
i is denoted I = {1, 2, · · · , N}. In most cases, it cannot be derived readily as a
function of the number of elements in a union of sets. On the other hand, that
of an intersection of sets is a closed form. The size of the searched region is such
a case.

As a result, |⋃i∈I Xi| is derived from the sets of |⋂j∈J Xj |, where J is a
subset of I, which is shown in equation (1).2

∣
∣
⋃

i∈I Xi

∣
∣ =

∑

J⊆I,J �=φ

(−1)|J|−1
∣
∣
⋂

j∈J Xj

∣
∣ (1)

The distance between individuals xi and xj including their maskstrings,
which is represented as d(xi, xj), is defined in (2).

d(xi, xj) =
L∑

l=1

B|cxil − cxj l|

B =
{

1, if mxil = mxj l = 0
0, otherwise

(2)

|⋂i∈I XI | is a closed form and derived below as (3), where [R]=z given real
number R and integer z.

|X1 ∩ X2 ∩ · · · ∩ XN | =
{

2M , if K = 0
0, otherwise

K =
N−1∑

i=1

N∑

j=(i+1)

d(xi, xj)

M =
L∑

l=1

[
1
N

N∑

i=1

mxil

]

(3)

2.2 Concept of the Proposed Method

The proposed method consists of a GA and a local search. The flow of our pro-
posed method is shown in Fig. 3. To obtain optima earlier, our method of searches

2 For instance, the number of elements of the union of three sets, X1, X2, and X3, is
obtained as follows:
|X1∪X2∪X3| = |X1|+ |X2|+ |X3|−|X1∩X2|−|X2∩X3|−|X3∩X1|+ |X1∩X2∩X3|

156 Y. Hanada et al.

Fig. 3. The Flow of the Proposed Method

used mainly schemes of GA. Any method of operators, such as a crossover and
mutation, or a generation alternation model can be applied. To use idle comput-
ing resources of enormous computing environments effectively, a local search is
applied. Our proposed method is outlined as follows.

Step 1. Generate Npop individuals randomly, where Npop is the population size.
In addition, no individuals are stored in the database.

Step 2. Apply operators, such as crossovers, mutations, and selections to indi-
viduals in a GA population.

Step 3. Store the individual ybest, which is the best individual of a GA popula-
tion, in the database and set its maskstring to the bitstring of which the values
of all loci are ’0’. However, ybest is not stored when it is included in the searched
regions, which are indicated by individuals that have already been stored in the
database.

Step 4. /Local search/ Expand a searched region indicated by a certain individ-
ual stored in the database. When a better individual is found, use it to replace
the worst individual of the population of GA. The details of the local search are
described in the next section 2.3.

Step 5. Go back to step 2 until some termination conditions, e.g., computing
cost reaches a limited amount or the exhaustive search is done, are satisfied.

At step 3, when there are NDB individuals in the database, replace the indi-
vidual xworst that has the poorest fitness in the database with ybest if the fitness

Mega Process Genetic Algorithm Using Grid MP 157

of ybest is bigger than that of xworst, otherwise ybest is not stored, where NDB

is the parameter of database capacity.

2.3 Local Search

We chose a certain individual from the database to apply the local search in
every generation. This individual satisfies the condition that the hamming-index
is the minimum value and its fitness is the maximum value. In our proposed local
search, one of the loci, the values of which stand at ’0’ of the maskstring of the
selected individual, is changed to a value of ’1’. The locus that holds the largest
variance of genes among all loci is selected. This operation is performed because
it is suitable to keep essentially the same hamming-index among individuals
stored in the database for the process of merging individuals, which is described
later. Moreover, it is desirable to retain genes of loci, which have lower variances
as they can be considered part of a better solution.

Given N individuals xi(1 ≤ i ≤ N) stored in the database, the process of the
local search is outlined as follows. Fig. 4 shows an example of the local search.

Step 1. Find the results of al using equation (4), which is the absolute value of
the difference between the average value of genes and 0.5 at each locus.

al =

∣
∣
∣
∣
∣

1
N

N∑

i=1

(cxil) − 0.5

∣
∣
∣
∣
∣

(1 ≤ l ≤ L) (4)

Step 2. Select the individual x, which has the minimum hamming-index and
maximum fitness, from N individuals stored in the database.

Step 3. Select the locus l∗, which indicates mxl∗ = 0. At the same time, al∗ is
the minimum value, from al(1 ≤ l ≤ L).

Step 4. Prepare the individual x′, which has the same maskstring as that of x.
In its chromosome, each gene is exactly the same as that of x at loci standing at
’1’ except l∗ in its maskstring. x′ is the best individual under search X ′, which
should be searched to expand the search region.

Step 5. Update mxl∗ to ’1’ and hx to hx+1. Furthermore, let x be x′ and replace
the worst individual of the population of GA by x if x < x′. The exhaustive
search is finished when hx approaches L.

At step 4, described above, X ′ is comprised of individuals produced by flip-
ping the gene at l∗ in the chromosome of each individual included in X. This
requires searching of 2hx individuals where the hamming-index of x is hx. Never-
theless, parallelization can be applied to easily search X ′. Moreover, this mecha-
nism uses computing resources effectively as the searched space increases linearly
with increasing computing resources and an exhaustive search is guaranteed un-
der infinite computations.

158 Y. Hanada et al.

Fig. 4. An Example of Local Search in the one max problem: The individual of which
the search region is expanded is individual x2. Expanding the region X2={* 1 0 1 * 1
} to the region {* 1 * 1 * 1 } requires searching the region X ′

2={* 1 1 1 * 1 }. The
searched region of x2, i.e., X2, becomes {* 1 * 1 * 1 }, after applying this expansion

2.4 Merge Operation in Database

Following the local search, a merge of individuals stored in the database is exe-
cuted in every generation to avoid overlapping searches in the process of the local
search. Individuals can be merged when the following conditions are satisfied:

Condition 1. xa and xb are given individuals. When they satisfy the following
conditions, they are in condition 1. They have the same maskstrings, d(xa, xb) =
1, and locus is l∗ , which satisfies mxal∗ = mxbl∗ = 0 and cxal∗ �= cxbl∗ . In this
case, select one that has better fitness from xa and xb, and let its value of l∗ in
its maskstring be ’1’. At the same time, the other is deleted from the database.
For example, in Fig. 4, the individual x1 and the updated individual x2 can
be merged with the condition 1 then let mx22 be ’1’ and hx2 be ’4’. x1 is then
deleted.

Condition 2. xa and xb are given individuals. When these individuals satisfy
the following conditions, they are in condition 2: d(xa, xb) = 0 and no locus
exists that satisfies mxal = 1, mxbl = 0(1 ≤ l ≤ L). In this case, xa is deleted
from the database because of Xa ⊂ Xb. For example, in Fig. 4, the individual
x3 and the individual x4 can be merged meeting condition 2. Therefore, x3 is
deleted.

Condition 3. xa and xb are given individuals. When Xa ∩ Xb �= φ and |Xa| ≥
|Xb|, they are in condition 3 shown Fig. 5. In this case, Xa is expanded until
it can include Xb, and then they are merged using condition 2. X ′

a indicates
the region that is required to expand until it can include Xb. X ′

a ∩ ¬Xb must be
searched to merge using condition 2. We introduce parameter A, which indicates
the ratio of |Xa∩Xb| of |X ′

a∩¬Xb|, i.e., |Xa∩Xb|/|X ′
a∩¬Xb|, because we obtain

a better solution under the available limited computing resources. This merge is

Mega Process Genetic Algorithm Using Grid MP 159

Fig. 5. Merge using Condition 3

not applied when A is larger than a certain value. To decide an appropriate A,
the size of the search space and the number of available computing resources or
cost must be considered. In the present study, we set A to 8.

3 Implementation of Mega Process GA on Distributed
Computing Environments

3.1 Distributed Processing at Local Search

Parallelization is applicable to GA by using a master-slave model at evaluations
or crossovers. However, when the population becomes larger, the diversity of
the solutions also increases. As a consequence of this, huge computing resources
cannot be used effectively. Our proposed local search is applied to use massive
processors, i.e., Mega Processors.

At the local search phase in our proposed method, application of a local
search to individual x corresponds to searching the individual x′ of which the
maskstring is the same as that of x. It also satisfies d(x, x′) = 1, i.e., the set of
individuals that have arbitrary values at loci of the chromosome standing at ’1’
in the maskstring of x′ and the same values as those of x at other loci should be
searched. In the example shown in Fig. 4, for application of the local search to
X2={* 1 0 1 * 1 } at locus 3 it is necessary to search X ′

2={* 1 1 1 * 1 }(* = 0
or 1).

By using the opposite operation against condition 1 of the merger, paral-
lelization can be applied easily to evaluation of a set of individuals represented
with a maskstring. Fig. 6 shows an example in which a set of individuals is split
to some segmental sets of individuals.

To execute the local search in distributed computing environments, these
parts of the set are allotted to computation nodes. Each node evaluates assigned
individuals independently, which requires no communication among nodes.

3.2 Implementation on Grid MP

We examine the performance of the proposed method in a distributed computing
environment, built using the commercially available middleware Grid MP from

160 Y. Hanada et al.

*1

split

best inidividual

* * 1 * 0 *

*1 0 0 1 * 0 *

*1 0 1 1 * 0 *

*1 1 0 1 * 0 *

*1 1 1 1 * 0 *

11 1 1 1 1 0 1

Fig. 6. Example of Splitting Individuals

United Devices Inc.[17]. Grid MP is one of the toolkits of Grid computing and
is currently used to power several large-scale distributed computing projects.
In the Grid MP platform, the underutilized resources of many computers are
aggregated and used as a virtual computer system. The distributed computing
environment constructed by Grid MP consists of an MP Server and Devices. The
MP Server is a server that carries out user or Device authentication, monitoring
and scheduling of jobs, dispatching jobs to Devices, etc. Devices are computation
nodes that execute the jobs assigned by the MP Server.

In the Grid MP platform, application developers prepare their Program Mod-
ule executables, which are components of applications and consist of precompiled
executables and MDFs (Module Definition Files), and upload them to the File
Service of the MP Server. Data Packages, which are sets of reference data during
executions and PMFs (Package Manifest Files), have to also be registered as a
Data Set. MDFs indicate names of the executable, arguments, and the file in
which the results are written. PMFs show the compression format and the file
name of the data. A Job object comprising of several Workunits is created once
a user submits a Job. A Workunit is the minimum unit of a Job that one Device
has to execute and defines the Program Module executable and the Data to be
used. A Device during the polling state is assigned one Workunit. Fig. 7 shows
the standard Job execution form of Grid MP.

To implement ourproposed local search ondistributed computing environments
as shown inFig. 6, theProgramModule,which reads a data file inwhich individuals
to be searched are written and searches these individuals, must be prepared.

3.3 Overhead of Grid MP

We performed our proposed method in the heterogeneous distributed comput-
ing environment composed of machines belonging to RIKEN Genomic Sciences
Center (GSC)3 and Intelligent Design Systems Laboratory (ISDL) of Doshisha
University4. We used Grid MP platform version 4.0-3106. The specification of
machines used for the experiments is shown in Table 1. The User Machine in
Table 1 indicates the machine of a user who submits a job to the MP Server.

3 RIKEN GSC : http://big.gsc.riken.jp/
4 ISDL of Doshisha Univ. : http://mikilab.doshisha.ac.jp/

Mega Process Genetic Algorithm Using Grid MP 161

Fig. 7. Aspect of Performance of Job Execution form of Grid MP

Table 1. Specification of Machines Used for the Experiment

Affiliation Machine name #Nodes Processor Memory
User Machine - - harrier 1 mobile Pentium 1.8GHz 1GB
MP Server naiad 1 Xeon 2.8GHz x 2 2GB

Doshisha forte01-15 15 PentiumIII 600MHz 128MB
Devices ISDL libra/tiger 2 Xeon 2.8GHz x 2 1GB

RIKEN GSC le01-23 23 Celeron 1.3GHz 896MB

There is overhead due to the distinctive characteristics of the distributed
computing environment, such as communication environment and latency of the
middleware architecture dispatch mechanism. The latency is caused by some
processes on the MP Server and the Devices, e.g., creation of a Job object and a
schedule of Workunits and downloads of Workunits from the File Service of the
MP Server.

We examined elapsed times of execution of the Job, the Workunit of which
was only assigned and required no calculation in Devices. The number of Worku-
nits included in the Job was set to 32, 64, 128, and 256. Polling interval was set
to 30 seconds and 1 minute. 30 seconds is the minimum feasible interval. Fig. 8
shows the average value of Job creation time and its execution time. The results
shown are from 10 trials.

162 Y. Hanada et al.

(a) Polling Interval: 30sec (b) Polling Interval: 1min

Fig. 8. Elapsed Times of Empty Job

A Workunit is allotted to a Device, which has sent idle state of CPU to the
MP Server several times. As a consequence of this, execution time is expected
to depend on polling interval. However Fig. 8 illustrates that this interval has
no effect much on elapsed times. It indicates that the execution time is taken
up by preliminary processes such as preparing Workunits for their assignments
rather than by Devices queuing.

From Fig. 8 the period time of Job creation increases exponentially as increas-
ing in Workunits, in contrast execution time will not increase. This is because
once the Device completes its assigned Workunit and sends result to the MP
Server, it obtains a Workunit again if incomplete Workunits stay still in the File
Service. Therefore the latency of dispatching is hidden seemingly.

4 Numerical Experiments

To discuss the effectiveness of our proposed method in both infinite and limited
computation, it was applied to the one max problem and 3-deceptive problem[18].
The former is the most primitive benchmark problem of bitstrings, and its fit-
ness is a summation of the number of ’1’ included in a chromosome. The latter
is one of trap functions described as equation (5):

F3−deceptive =
N∑

i=1

fi (5)

fi =

⎧
⎪⎪⎨

⎪⎪⎩

0.9, ui = 0
0.8, ui = 1
0.7, ui = 2
1.0, ui = 3

The effectiveness of our method is discussed by solving these problems with
limited computation. The following equations (6), (7), (8), and (9) are the con-
tinuous test functions:

Mega Process Genetic Algorithm Using Grid MP 163

FRastrigin =
n∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

(6)

xi ∈ [−5.12, 5.12)

FSchwefel =
n∑

i=1

−xi sin
(√

|xi|
)

(7)

xi ∈ [−5.12, 5.12)

FRidge =
n∑

i=1

(i∑

j=1

xj

)2
(8)

xi ∈ [−64, 64)

FGriewank = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

(
cos

(xi√
i

))
(9)

xi ∈ [−512, 512)

In addition, we applied our proposed method to prediction of protein ter-
tiary structures. Proteins in nature have structures with the lowest potential
energy. Therefore, their structures can be predicted by energy minimization.
To treat prediction protein tertiary structures as optimization problems, energy
functions that define the structures of proteins are used as objective functions, a
design variable of which is the dihedral angle among the atoms that make up the
proteins[19]. We compared our method to conventional GA for this problem and
examined the performance of the proposed method in the distributed computing
environment built using Grid MP.

4.1 Performance of the Proposed Method in Infinite Computation
Cost

We applied the proposed method to the one max problem and 3-deceptive prob-
lem with a string length of L=30 without limiting computing resources. This
search was terminated when all the combinations had been searched. An exhaus-
tive search needs 230 solutions. The ER model[20] was used as the alternation in
each generation. We applied a GA with uniform crossover and each couple, or
parents, generated 20 children by crossover. The mutation rate was 0.03(=1/L)
and population size was 20. The capacity of the database, NDB , was 5 in this
experiment.

Fig. 9 shows the transition of the fitness and the ratio of the searched region
on solving the one max problem. In Fig. 9(b), when the ratio of the searched
region attained 1.0, all the area had been searched.

The performance of the proposed method was similar to that of the con-
ventional GA. This was because the proposed method searched using mainly

164 Y. Hanada et al.

(a) History of fitness (b) History of the Searched Region
Rate

Fig. 9. Performance of GA using the Local Search Mechanism in the One Max Problem

Fig. 10. Performance of GA using the Local Search Mechanism in the 3-deceptive
Problem

schemes of GA. It is certain that the solution obtained by an exhaustive search
is the optimum, although the optimal solution is obtained in the earliest part
of the search. Moreover, these mechanisms enable us to show the quantitative
ratio of the searched region during the search as in Fig. 9(b).

Fig. 10 shows the transition of the fitness in the 3-deceptive problem. Both
the conventional GA and our proposed method fell into local optima in the
early stages of the search. In the 3-deceptive problem, it is difficult for GAs
to obtain the optimal solution because populations tend to be trapped by local
optima. Similar to a conventional GA, our proposed method obtains convergence.
Nevertheless, it can obtain the optimum as increases in computing costs yield
increases in the searched regions. As a consequence of this, the optimal solution
can be found by continuing the search.

Mega Process Genetic Algorithm Using Grid MP 165

(a) Number of Successes (b) Number of Evaluations

Fig. 11. Performance of GA using the Local Search Mechanism with Continuous Func-
tions

4.2 Performance of the Proposed Method with Limited
Computation Cost

To perform the exhaustive search, many evaluations of individuals are required.
Our proposed method can perform an exhaustive search. It is expected that
the proposed method has a high possibility of finding the optimum solution in
the early stages of searches because it mainly uses schemes of GA. Therefore,
we then examined whether our method can obtain the optimum under limiting
evaluations.

We applied the proposed method to four test continuous functions to compare
it with conventional GA. In each function, an optimum solution was attempted
by the proposed method. Each function had 10 dimensions and the number of
evaluations was limited to 2.5x105. The ER model was used as the alternation
in each generation. We applied a GA with uniform crossover and each couple,
or parents, generated 20 children by crossover. We set the mutation rate to
0.01(=1/L) and the population size to 200. The capacity of the database, NDB ,
was set to 3, 5, 7, and 9 in this experiment.

Fig. 11 describes the number of trials that obtained the optimum and the
average number of evaluations needed to acquire the optimum. The results shown
are from 50 trials.

Fig. 11(a) illustrates that the proposed method and the conventional GA
obtained the optimal solution in all trials at Rastrigin function, Schwefel func-
tion, and Ridge function. The proposed method derived the optimal solutions
several times at Griewank function. In addition, Fig. 11(b) indicates that our
method could obtain the optimum with fewer evaluations than a conventional
GA although our proposed method required many evaluations at the local search
phase. These results indicated that our method also retained superior perfor-
mance with limited computing costs. We focused attention on the effects of
parameter NDB on the performance of our method. The numbers of successful
trials of NDB = 3 and 9 were greater than those of NDB = 5 and 7, whereas
the result of the number of evaluations was contrary in the Ridge function. In
contrast, the number of successful trials of NDB = 9 was better than those of

166 Y. Hanada et al.

NDB = 3, 5 and 7. As a result, there is no setting that can acquire a more op-
timal solution with fewer evaluations but the proposed method can search free
from the setting of parameter NDB .

4.3 Performance of the Proposed Method in Protein Tertiary
Structure Energy Minimization Problems

To discuss the performance of our method in real complex problems, we applied
the method to protein tertiary structure energy minimization problems. In this
experiment, we used OPLS-AA/L[21, 22], which is one of the potential energy
functions within the framework of classical mechanics consisting of certain energy
terms with force-field parameters, and examined our method on a small protein
named Met-enkephalin composed of 5 amino residues and 23 dihedral angles.

Applying this minimization problem to GA, the range of value of each dihe-
dral angle was [-π, π). An angle is expressed strings of 6 bits, i.e., it is divided
into 26 equal intervals. dMSXF[23] was used as the crossover and the alternation
in each generation. In all crossovers, the number of transitions, kmax, was set to
10 and the number of generating neighbor individuals of the respective step, μ,
was 10. Therefore, each couple, or parents, generated 100 children. We set the
population size to 40, 60, and 80. The capacity of the database, NDB , was set
to 5 in this experiment. The number of evaluations was limited to 1.2x105.

Table 2 shows the best, the average, the median and the worst value of
obtained energies. Our method retains the performance of a conventional GA in

Table 2. The Performance of Proposed Method on Met-enkephalin

Population GA+LS GA
Size best med∗ avg∗∗ worst best med avg worst
40 -282.6 -281.3 -281.4 -281.1 -283.0 -281.3 -281.5 -281.2
60 -282.2 -281.3 -281.4 -281.2 -282.0 -281.3 -281.4 -281.2
80 -283.2 -281.2 -281.2 -280.9 -282.1 -281.2 -281.2 -281.0

*:median, **:average

a complex problem, i.q., benchmark problems, such as the one max problem. The
latest reported minimum energy of this protein is approximately -287.5 obtained
by the method PSA/GAc[24]. This examination has not matured yet and needs
sophistication of the parameters to obtain better solutions.

We performed this experiment in a heterogeneous distributed computing en-
vironment shown in Table 1. To implement our method in this environment,
operations of the GA are executed on the User Machine. At the local search
phase, expanding the searched region is executed in parallel using 40 Devices,
forte01-15, libra, tiger, and le01-23. Fig. 12 illustrates the environment used for
the experiments.

From Fig. 8, at least approximately 400 seconds exist as overhead. The local
search is then executed on distributed environment when the size of the individ-

Mega Process Genetic Algorithm Using Grid MP 167

Fig. 12. Computing Environment for Computational Experiments

Fig. 13. Elapsed Times of Local Search on energy minimization of Met-enkephalin

uals that should be searched surpasses a certain value. In the energy minimiza-
tion problem of Met-enkephalin, it is clear at pilot study that evaluations of 218

individuals take approximately 500 seconds using the User Machine. Thereby
evaluations in excess of 219 should be executed in this distributed environment.

We examined the elapsed time of the Job, which evaluated a set of individuals
represented with a maskstring. In this experiment, 219, 220, and 221 evaluations
were split to 32, 64, and 128 Workunits. In each setting of number of Workunits,
the total of evaluations was divided equally to Workunits, e.g., the number of
evaluations that each Workunit had was 214 where the number of Workunits was
set to 64 and total of evaluations was 220.

Fig. 13 shows the total execution times of energy minimization problem of
Met-enkephalin using Grid MP. The results are the averages of 10 trials.

It illustrates that our proposed method can execute faster on Grid MP than
only using the User Machine. In addition the execution time does not depend on
setting of Workunits essentially. Focusing at the result of 32 Workunits, execution
time is slightly much than 64 and 128 Workunits with 219 calculations. Grid MP

168 Y. Hanada et al.

(a) 220 calculations (b) 221 calculations

Fig. 14. Contribution of Devices

has the redundancy for its high performance and fault-tolerance. Some Devices
execute the same Workunit at a time and the fastest finished result is adopted
when total of Workunits is less than number of Devices. As a result, the waste
of calculations arises if no fault exists. In addition high spec machines will have
finished calculating and sending their results before low spec machines even if low
spec machines obtain Workunits earlier than high spec machines. Thus low spec
machines, which are assigned Workunits that high spec machines also execute,
cannot contribute their computation resources in the environment which has
excessive Devices against Workunits unless high spec machines lose connections
to the MP Server by some problems during executing Workunits.

Fig. 14 shows that the rate of Devices that are adopted their results, i.e., the
rate of contribution of Devices, with 220 and 221 calculations.

The contribution was much the same in all experiments except for the re-
sult 32 Workunits with 221 calculations. Few trials exist that forte01-15 could
contribute superficially in the experiment of 32 Workunits with 221 calculations.
In this implementation, one Workunit poses 216 calculations to a Device where
the number of Workunits is set to 32 and total of evaluations is 221. 216 calcu-
lations are so heavy that forte01-15 cannot finish the executable even if delays
of assignment of Workunits exist.

The number of Workunits has to be set bigger than the number of Devices.
The overhead increases in response to increasing in Workunits. Thus appropriate
number of Workunits should be set to yield high performance of proposed method
in a heterogeneous distributed environment with considering contributions of
Devices.

5 Conclusions and Future Work

GAs are suitable algorithms for parallel processing. However, increases in the
number of individuals and/or computing resources do not yield improvements
of performance in most methods because the diversity of the solution is also
increased. Our proposed method, Tabu · Local Search mechanism for Mega Pro-

Mega Process Genetic Algorithm Using Grid MP 169

cess GA, can expand the searched region linearly as the available computing
resources increases. Furthermore, the exhaustive search is guaranteed under in-
finite computations, while the exhaustive search is not guaranteed with conven-
tional GAs. The proposed method was tested on the one max problem without
limiting computing resources. The results confirmed that the solution obtained
with this method is optimum by exhaustive search, although the optimal solution
is obtained in the earliest part of the search. In addition, we applied the pro-
posed method to four test continuous functions to derive the optimum solutions
for comparison with conventional GA. These results indicated that the proposed
method also retains superior performance with limited computing costs.

In addition we performed the proposed method in one of the instances of the
energy minimization problems of protein tertiary structures in a heterogeneous
distributed computing environment composed of 40 computation nodes belong-
ing to RIKEN GSC and ISDL of Doshisha University, which was built up with
Grid MP. We examined the execution time that included the overhead in this
environment and discussed the appropriate setting of number of Workunits with
considering overheads and contribution of computation nodes.

In future work, we will apply our proposed method to a large-scaled comput-
ing Grid and examine its effectiveness. Moreover, we will apply restarts in the
non-searched region when the population of the GA obtains convergences as the
proposed method can distinguish the non-searched region from the whole search
space.

Acknowledgments

We are grateful to Prof. Dr. Akihiko Konagaya and Fumikazu Konishi of RIKEN
Genomic Sciences Center and Hiroyuki Kobayashi of Sumisho Electronics Co.,
Ltd.5 for valuable discussion and contributions to the development of the dis-
tributed computing environment built using Grid MP.

References

1. Goldberg,D.E.: Genetic Algorithms in Search Optimization and Machine Learnig.
Addison-Wesley (1989)

2. H. Satoh, M. Yamamura and S. Kobayashi: Minimal Generation Gap Model for
GAs Considering Both Exploration and Exploitation. Proc. of IIZUKA. pp.494-
497. 1996

3. H. Kargupta: SEARCH, polynomial complexity, and the fast messy genetic algo-
rithm. University of Illinois at Urbana-Champaign, Urbana, IL. IlliGAL Report
No. 95008. 1995

4. G. R. Harik: Linkage learning in via probabilistic modeling in the ECGA. Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL. IlliGAL Technical Report No.
99010. 1999

5 Sumisho Electronics Co., Ltd. : http://www.sse.co.jp/e/index.html

170 Y. Hanada et al.

5. I. Ono and S. Kobayashi: A Real-coded Genetic Algorithm for Function Optimiza-
tion Using Unimodal Normal Distribution Crossover. Proc. of 7th Int. Conf. on
Genetic Algorithms. pp.246-253. 1997

6. Pelikan,M., Goldberg,D.E., and Lobo,F.: A Survey of Optimization by Building
and Using Probabilistic Models. Technical Report 99018, IlliGAL (1999)

7. Larranaga,P., Lozano,J.A.: Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academic Publishers (2001)

8. Reiko Tanese: Distributed Genetic Algorithms. Proc. 3rd International Conference
on Genetic Algorithms. pp.434-439. 1989

9. T. Jansen: On the Analysis of Dynamic Restart Strategies for Evolutionary Algo-
rithms Proc. Parallel Problem Solving from Nature - PPSN VII, 7th International
Conference. pp.33-43. 2002

10. Alex S. Fukunaga: Restart Scheduling for Genetic Algorithms, Lecture Notes in
Computer Science, vol.1498, pp.357-369. 1998

11. Sean Luke: When Short Runs Beat Long Runs, Proceedings of the Genetic and
Evolutionary Computation Conference, pp.74-80. 2001

12. J. Maresky et al.: Selectively Destructive Restart, Proc. of Sixth International
Conference on Genetic Algorithms, pp.144-150. 1995

13. Yusuke Tanimura: Parallel and Distributed Genetic Algorithm on The Cluster
System and The Computational Grid. University of Doshisha. 2003, in Japanese

14. Hiroaki Imade et al.: A Grid-Oriented Genetic Algorithm for Estimating Genetic
Networks by S-Systems, Proc. SICE Annual Conf. pp3317-3322, 2003

15. Hiroaki Imade et al.: A framework of grid-oriented genetic algorithms for large-scale
optimization in bioinformatics Proc. of The Congress on Evolutionary Computa-
tion in Canberra. vol.1, pp623- 630, 2003

16. H. Nakata et al.: Protain structure optimizaion using Genetic Algorithm on Jojo
Journal of Information Processing Society of Japan. 2002-HPC-93, pp. 155-160,
2003. in Japanese

17. United Devices. Grid MP 4.0 Application Developer’s Guide, 2003.
18. Martin Pelikan et al.: BOA:The Bayesian Optimization Algorithm. IlliGAL Report

No. 99003 1999
19. Y. Sakae and Y. Okamoto. Optimization of protein force-field parameters with the

Protein Data bank. http://arxiv.org/abs/cond-mat/0309110.
20. D. Thierens, D. E. Goldberg: Elitist Recombination: an integrated selection recom-

bination GA Proceedings of the 1st IEEE Conference on Evolutionary Computa-
tion pp.508-512. 1994

21. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives. Development and Testing of
the OPLS All-Atom Force Field on Conformational Energetics and Properties of
Organic Liquids. J. Am. Chem. Soc., 117, 11225-11236. 1996

22. G. A. Kaminsky, R. A. Friesner, J. Tirado-Rives and W. L. Jorgensen. Evaluation
and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison
with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B,
105, 6474-6487. 2001

23. K. Ikeda, S. Kobayashi: Deterministic Multi-step Crossover Fusion: A Handy
Crossover for GAs. Proceedings of 7th International Conference on Parallel Prob-
lem Solving from Nature pp162-171. 2002

24. M. Ogura, T. Hiroyasu, M. Miki and Y. Okamoto. Implementation Models for
Distributed Memory Architecture of Parallel Simulated Annealing using Genetic
Crossover. Proceedings of Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems. pp121-126. 2001

“Gridifying” an Evolutionary Algorithm for
Inference of Genetic Networks Using the

Improved GOGA Framework and Its
Performance Evaluation on OBI Grid

Hiroaki Imade1, Naoaki Mizuguchi1, Isao Ono1, Norihiko Ono1,
and Masahiro Okamoto2

1 The University of Tokushima, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
{hiro1121, nio, isao, ono}@is.tokushima-u.ac.jp

2 Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
okahon@brs.kyushu-u.ac.jp

Abstract. This paper presents a genetic algorithm running on a grid
computing environment for inference of genetic networks. In bioinfor-
matics, inference of genetic networks is one of the most important prob-
lems, in which mutual interactions among genes are estimated by us-
ing gene-expression time-course data. Network-Structure-Search Evolu-
tionary Algorithm (NSS-EA) is a promising inference method of genetic
networks that employs S-system as a model of genetic network and a
genetic algorithm (GA) as a search engine. In this paper, we propose
an implementation of NSS-EA running on a multi-PC-cluster grid com-
puting environment where multiple PC clusters are connected over the
Internet. We “Gridifiy” NSS-EA by using a framework for the develop-
ment of GAs running on a multi-PC-cluster grid environment, named
Grid-Oriented Genetic Algorithm Framework (GOGA Framework). We
examined whether the “Gridified” NSS-EA works correctly and evalu-
ated its performance on Open Bioinformatics Grid (OBIGrid) in Japan.

1 Introduction

Inference of genetic networks is a problem in which mutual interactions among
genes are estimated by using gene-expression time-course data observed in bio-
logical experiments. Recently, inference of genetic networks has attracted atten-
tion as one of the most important problems in bioinformatics. This is because
large-scale accurate gene expression profiles have been available in virtue of the
recent development of DNA microarray or DNA chip technologies.

S-system [23, 28] is known as one of the promising models of genetic net-
works. S-system has been expected to be able to approximate various interac-
tions among genes because it is a simultaneous nonlinear differential equation
system based on the power low formalism. Inference of genetic networks by S-
system is formalized as a search problem in which appropriate system parameters
of S-system must be found so that the difference between the time course data

pp. 171–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
A. Konagaya and K. Satou (Eds.): LSGRID 2004, LNBI 3370,

172 H. Imade et al.

calculated by the S-system model and that observed in biological experiments
is less than a tolerance given by a user. This problem has the difficulty of high-
dimensionality, multimodality and strong non-linearity. This problem also has
the difficulty that there is no way to determine a network structure uniquely.
This is because sufficient time-course data to determine a network structure
uniquely cannot be obtained in experiments because of difficulty and high cost
of experiments. For this reason, we have to find as many network structures
that explain the experimentally-observed time-course data and are biologically-
promising ones as possible.

The Genetic Algorithm (GA) is an optimization method inspired by the evo-
lution process of living things [5]. Because the GA is not only a direct search
method but also a population-based stochastic search method, the GA can effi-
ciently search multiple good solutions on high-dimensional, non-linear and mul-
timodal problems. Hence, the GA has been expected as a promising method
for searching the system parameters of S-system [1, 2, 10, 12, 18, 16, 17, 21, 25, 26,
27]. Of the existing methods, Network-Structure-Search Evolutionary Algorithm
(NSS-EA) [18] has shown good performance. In NSS-EA, the search for network
structures and that for system parameters corresponding to each network struc-
ture are explicitly separated, which enables to efficiently find multiple different
good network structures. This method reportedly succeeded to find multiple
different good structures more efficiently than conventional methods on a five-
substance benchmark problem [18].

For problems such as inference of genetic networks by S-system in which
it takes a long time to calculate an evaluation value of a solution candidate,
GAs running on parallel computers, called parallel GAs, are useful to find good
solutions in a realistic time. There are many studies on parallel GAs for reduc-
ing search time by using multiple CPUs. They can be categorized into three
approaches; the master-worker-type GA [15], the island-type GA[24, 6, 9, 8] and
the cellular-type GA [7]. In these studies, they implemented their algorithms on
SMP computers or PC clusters. However, in order to solve larger problems, we
need more computation power than that provided by a single organization.

Recently, the grid computing environment has attracted attention as a new
computing environment from the viewpoint of problem solving by virtual orga-
nizations. Some studies on grid computing have been made actively in order to
use geographically-distributed resources securely and transparently over the In-
ternet [4, 14]. There are some grids for studying bioinformatics applications such
as North Carolina Bioinformatics Grid [19], BioGrid [3] and Open Bioinformat-
ics Grid [13]. However, there are almost no studies on GAs that are supposed
to run efficiently on a grid computing environment due to the following rea-
sons: Generally, a grid differs from a PC cluster in that the users belong to
multiple different organizations. All nodes cannot share a file system. Remote
nodes cannot be directly accessed over the Internet due to NATs. The connec-
tions over the Internet are unstable and low-speed, and computation abilities
of each node are not homogeneous. For these reasons, the existing implemen-
tations of parallel GAs developed for SMP computers or PC clusters can not

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 173

work on grid computing environments. In order to develop Grid-Oriented GAs
(GOGAs), GA researchers must understand various domain knowledge on grid
computing such as security, transferring files and invoking remote processes over
the Internet, handling troubles with remote nodes and network, and how to hide
the network latency, even if some middlewares such as Globus Tool Kit (GTK)
[4] are adopted. In order to facilitate the development of GOGAs, we have devel-
oped the GOGA Framework [11] based on GTK and Java. By using the GOGA
Framework, a GOGA developer can be liberated from writing complex source
codes for utilizing grid middleware.

The rest of this paper consists of six sections as follows: In section two,
we briefly introduce NSS-EA [18]. Then, we discuss the requirements of the
grid implementation of NSS-EA in section three. Section four introduces GOGA
Framework [11] including recent improvements. In section five, we discuss an
implementation of NSS-EA running on a multi-PC-cluster grid environment,
named the “Gridified” NSS-EA developed by using the GOGA Framework. We
report the early evaluation of the proposed “Gridified” NSS-EA on the OBIGrid
in section six. Section seven is conclusion and future work.

2 Network-Structure-Search Evolutionary Algorithm

2.1 Inference of Genetic Networks by S-System

S-system has attracted attention as one of the promising models of genetic net-
works. S-system is given by

dXi

dt
= αi

n∏

j=1

X
gij

j − βi

n∏

j=1

X
hij

j (1)

where Xi (> 0) is the concentration of a substance i or an expression level,
αi, βi, gij and hij are the system parameters that determine the shape of time
course. gij is the interaction coefficients of the effect of Xj on the synthesis of
Xi. hij is the interaction coefficients of the effect of Xj on the degradation of
Xi. αi and βi are the rate constants of synthesis and degradation, respectively,
and are non-negative. As shown in Eq. 1, S-system is a full connection model
which assumes that all the state variables, Xj , affects the synthesis process of
Xi, represented by the first term in the right part of Eq. 1, and the degradation
process of Xi, represented by the second term in the right part of Eq. 1. The signs
of gij and hij determine a network structure. If gij (hij) is positive, substance
j induces the synthesis (degradation) of substance i. If gij (hij) is negative,
substance j suppresses the synthesis (degradation) of substance i. If gij (hij)
is zero, substance j has no effects on the synthesis (degradation) process of
substance i.

Inference of genetic networks by S-system is formalized as a search problem
in which appropriate system parameters of S-system must be found so that the
difference between the time course data calculated by the S-system model and

174 H. Imade et al.

the time course data observed in experiments is less than a tolerance given by a
user. In NSS-EA [18], the following two evaluation functions are used:

fMeanSquaredError =
n∑

i=1

T∑

t=1

(
Xcal

i (t) − Xexp
i (t)

Xexp
i (t)

)2

(2)

fMaxError = max
1≤i≤n
1≤t≤T

∣
∣
∣
∣
Xcal

i (t) − Xexp
i (t)

Xexp
i (t)

∣
∣
∣
∣ (3)

where T is the number of sampling points, Xexp
i (t) is the value of Xi observed

in experiments at time t, Xcal
i (t) is the value of Xi at time t obtained by solving

S-system. This problem has the difficulty of high-dimensionality, multimodal-
ity and strong non-linearity. This problem also has the difficulty that there is
no way to determine a network structure uniquely. This is because sufficient
time-course data to determine a network structure uniquely cannot be obtained
in experiments because of difficulty and high cost of experiments. For this rea-
son, a search engine should find as many network structures that explain the
experimentally-observed time-course and satisfy biological knowledge as possi-
ble. For example, it is known that the number of substances having effects on a
single substance is relatively small, which means that many of gij and hij are
zero, in actual genetic networks. Two network structures are judged to be the
same when the interaction among the all substances are the same between the
two networks, i.e. the signs of all the interaction coefficients of S-system are the
same between the two networks.

2.2 NSS-EA

Overview of NSS-EA. Morishita et al. have proposed a search method for
efficiently finding multiple biologically-promising network structures that ex-
plain experimentally-observed time-course data well, named Network-Structure-
Search Evolutionary Algorithm (NSS-EA) [18]. As shown in Fig. 1, NSS-EA
consists of two parts: the search for network structures, named the structure
search, and the search for the system parameters of each network structure,
named the parameter search. By separating the structure search and the param-
eter search explicitly, NSS-EA can sample only biologically-promising network
structures intensively by controlling the search process of network structures.

Morishita et al. compared the performance of NSS-EA and UNDX+MGG-SS
[27]. UNDX+MGG-SS is a conventional method based on a GA and has been
reported that it showed good performance. Morishita et al. applied NSS-EA
and UNDX+MGG-SS to a five-substance genetic-network estimation problem.
In the case of no limited number of substance-substance interactions, NSS-EA
succeeded in finding 207 different satisfactory structures while UNDX+MGG-
SS found only 19 ones. In the case where the number of substances interacting
with a substance is limited to three, NSS-EA found 100 different satisfactory
structures while UNDX+MGG-SS did not [18].

The algorithms of the structure search and the parameter search in NSS-EA
are detailed in the followings.

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 175

Fig. 1. Network-Structure-Search Evolutionary Algorithm (NSS-EA) [18]

Structure Search. As shown in Fig. 1, the structure search employs the struc-
ture matrix whose elements are sgij

and shij
as an individual representation.

sgij
and shij

are the signs of interaction coefficients between substances, gij and
hij , respectively, where sgij =′ +′ (shij =′ +′) if gij (hij) is positive, sgij =′ −′

(shij
=′ −′) if gij (hij) is negative, and sgij

=′ 0′ (shij
=′ 0′) if gij (hij) is zero.

The structure search uses the structure mutation as a structure-search opera-
tor. The structure mutation changes the value of a randomly-chosen element to
another allele randomly. The generation-alternation model is a model based on
Minimal Generation Gap (MGG) [22]. The algorithm of the structure search is
as follows:
1. Generation of initial population

Generate nSS
pop individuals with structure matrices randomly and let the indi-

viduals be an initial population. Here, the number of substances interacting
with each substance is limited to one, which means that the number of ele-
ments whose values are other than ′0′ in a row of a structure matrix is one.
More than two individuals with the same matrix are not allowed to exist
in the population. Then, evaluate each individual in the population by the
parameter search described below.

2. Selection for reproduction
Choose two parents randomly and remove them from the population.

3. Generation of kids
Apply the structure mutation to each parent nSS

kid times to generate 2nSS
kid

kids.
4. Evaluation of kids

For each kid generated in step 3, perform the parameter search to obtain
the evaluation value of the kid, fMaxError. In order to reduce the search time,
individuals and their evaluation values are cached if the evaluation value is
less than f∗

MaxError or is larger than λfbest, where λ is a constant given by

176 H. Imade et al.

a user and fbest is the evaluation value of the best individual in the current
population, and reuse them when the same individuals are generated in step
3. In order to obtain various network structures, individuals with the eval-
uation values of fMaxError ≤ f∗

MaxError are saved in a file, where f∗
MaxError is

given by a user in advance.
5. Selection for survival

Remove the same individuals as ones included in the population from the
family consisting of the parents and their kids. Select the best and second
best individuals from the family and add them to the population.

6. Repeat the above steps from two to five nSS
itr times.

Parameter Search. In the parameter search, the system parameters of S-
sysmtem, αi, βi, gij and hij , are searched according to the structure matrix
passed by the structure search as shown in Fig. 1. In the case of sgij

=′ +′

(shij =′ +′) in the structure matrix, the search range of gij (hij) is limited to
positive. In the case of sgij =′ −′ (shij =′ −′), the search range of gij (hij) is
limited to negative. In the case of sgij =′ 0′ (shij =′ 0′), the search range of gij

(hij) is fixed to zero. As described above, the value fMaxError of the best solution
found in the parameter search is returned as the evaluation value of the structure
matrix to the structure search. The parameter search employs Unimodal Normal
Distribution Crossover (UNDX) [20] as a crossover operator and MGG [22] as a
generation-alternation model. The number of parameters to be searched changes
depending on the number of sgij and shij whose values are ′0′. From a viewpoint
of search efficiency, the population size is set to nPS

pop = γpopnparam, the number
of applying UNDX to a pair of parents in a generation is set to nPS

kid = γkidnparam
and the number of iterations for a trial of the parameter search is set to nPS

itr =
γitrn

PS
pop, where nparam is the number of sgij

and shij
whose values are ′+′ or

′−′ and γpop, γkid, γitr are constants given by a user in advance. The evaluation
value of an individual in the parameter search is the value of fMeanSquredError.

3 Requirements for Implementation of NSS-EA

In NSS-EA, it takes a long time to calculate the evaluation value of a struc-
ture matrix by performing the parameter search because a complex nonlinear
differential equation system must be solved enormous times. In order to remedy
this problem, NSS-EA adopted a master-worker model in which the process of
the structure search is performed on a master node and the processes of the
parameter search are done on multiple worker nodes in parallel. In order to en-
able NSS-EA to run on a multi-PC-cluster grid computing environment where
multiple PC clusters are connected over the Internet, the “Gridified” NSS-EA
should satisfy the following requirements:

– Security
1. Secure user authentication when a worker process is invoked on a remote

node and a connection is made over the Internet
2. Data encryption and decription when exchanged over the Internet

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 177

– Flexibility
1. Dynamic addition and deletion of worker nodes without stopping com-

putation
– User-friendliness

1. Single-sign-on authentication over the Internet
2. Automatic file transfer mechanism to the remote nodes necessary to run

programs
3. Temporal resource clean up mechanism after pogram execution
4. Remote error message report mechanism
5. Interactive process invocation and termination on remote nodes
6. Minimum overhead for the start-up time

– Robustness
1. Dynamic node-separation mechanism when a master cannot communi-

cate with a certain worker due to some trouble in the worker node and/or
network

2. Checkpoint and restart mechanism when a master node fails due to some
troubles

– Scalability
1. Performance improvement as the number of workers increases

4 Grid-Oriented Genetic Algorithm Framework (GOGA
Framework)

In order to facilitate the development of Grid-Orieneted Genetic Algorithm
(GOGA), we have developed a framework named the GOGA Framework. A de-
veloper can realize the requirements of security, flexibility and user-friendliness
only by using the GOGA Framework. The requirements of robustness and scal-
ability can be also easily realized by using the GOGA Framework.

4.1 Genetic Algorithm (GA)

Generally, GA models can be categorized into the single population model and
the multiple population model. A developer can easily “Gridify” both of the
single population model and the multiple population model by using the GOGA
Framework.

The single population model is a model in which one population are evolved
by genetic operators. Simple GA [5] and MGG [22] are its examples. Gener-
ally, its algorithm can be described as follows: 1) generate an initial population
randomly (generation of initial population), 2) choose parents from the popu-
lation (selection for reproduction), 3) generate kids by crossover and mutation
(generation of kids), 4) calculate the evaluation values of the kids (calculation
of evaluation values), 5) select the individuals surviving in the next generation
(selection for survival), and 6) repeat the above steps from two to five until a
terminating condition is satisfied. This model can be parallelized by assigning

178 H. Imade et al.

Fig. 2. Grid Computing Environment

the population data and the processes other than calculation of evaluation val-
ues to one node, named master, and assigning the processes of calculation of
evaluation values to multiple nodes, named workers.

The multiple population model is a model in which multiple sub-populations
are evolved independently and interact with each other periodically. Island model
[24] and DuDGA [9] are its examples. Generally, its algorithm can be described as
follows: 1) generate multiple initial sub-populations (generation of initial popula-
tion), 2) apply genetic operators to each sub-population (independent evolution),
and 3) exchange information, such as the best individuals in each sub-population,
among sub-populations periodically (interactions among sub-populations). This
model can be parallelized by assigning each sub-population and the processes of
independent evolution to each node, named peer.

4.2 Grid Environment

The GOGA Framework assumes a grid computing environment in which multiple
sites connect to each other via the Internet and each site includes global nodes
and private nodes, as shown in Fig. 2. A global node has a global IP and can be
directly accessed from other sites. A private node has a global or private IP and
can not be directly accessed from other sites.

4.3 Programming Language and Middleware

The GOGA Framework employs Java as a programming language from the view-
points of robustness, flexibility, portability and hiding network latency. Java is an
object-oriented programming language that provides powerful multithread man-
agement, memory management, exception handling functions and good portabil-
ity. The GOGA Framework uses Globus Tool Kit (GTK) [4], which is a defacto
standard middleware for grid programming. We also use CoG Tool Kit [14] to ac-
cess GTK with Java. GTK provides functions for authenticating users based on
X.509 certificates, enabling single-sign-on, invoking processes on remote global
nodes, transferring files and standard input, output, or error messages to remote
global nodes, and encrypting data transferred between global nodes. Note that
GTK cannot handle private nodes behind NAT.

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 179

Fig. 3. Architecture of GOGA Framework

4.4 Architecture

Figure 3 shows the architecture of the GOGA Framework. In the GOGA Frame-
work, a persistent process on a node such as the process of generation alternation
on a master and the process of independent evolution on each peer is called a
job. A transient process invoked by other nodes such as the request of calcula-
tion of evaluation values and the request of interactions among sub-populations
is called a task. A persistent data on a node such as a population on a master
or a peer is called session data. The GOGA Framework consists of the following
four managers.

– Local manager
The local manager program manages jobs and session data and handles tasks
received from other local managers on each private node. The processes
of sending, receiving and performing tasks and that of executing jobs are
assigned to independent threads, respectively, so that GOGA developers can
easily realize to hide network latency and to handle troubles by terminating
the corresponding job threads. This program requires Java and the rsh server.

– Gateway manager
The gateway manager program runs on more than one global node in each
site and relays a task between sites over the Internet according to a grid node
database named the sitemap. In the site map, a node is specified by a host-
name and a port number, called the contact string. All the tasks exchanged
among gateway managers are encrypted by SSL. This program requires Java,
CoG, GTK and rsh/rcp clients.

– Framework manager
The framework manager program is used for starting up the GOGA Frame-
work. This program runs on a certain private node that the user uses as a

180 H. Imade et al.

user-terminal node. The framework manager, first, performs authentication
process and, then, transfers necessary files to other nodes. After that, the
framework manager invokes gateway managers on global nodes and local
managers on private nodes. This program requires Java and CoG.

– Job manager
The job manager program is used for invoking jobs on local managers. This
program runs on a user-terminal node. This program requires Java and CoG.

– Console manager
The console manager program is used for displaying messages received from
tasks and jobs on remote nodes. This program requires Java and CoG.

4.5 Programming Interfaces

The GOGA Framework provides the following classes to enable a GOGA devel-
oper to easily “Gridifiy” parallel GAs:

– AbstractJob class
This class provides methods for sending and receiving user tasks, initializa-
tion and job processing. Errors during requesting tasks are notified to the
user-defined codes of job processes.

– AbstrackTask class
This class provides methods for user tasks and the serialization/deserialization
of necessary data to perform the task.

– Environment class
By using Environment class, jobs and tasks can register any objects as session
data and any jobs to the local manager, to refer them and to delete them.
This class also provides two methods, named printStringsToStandardOutput
and printStringsToStanardError, for displaying any messages on the console
manager.

4.6 Behavior

The framework manager, first, generates a certificate by receiving user’s pass
phrase and, then, performs authentication processes on global nodes on each
site. Next, the framework manager sends all necessary files to all the nodes on
the grid and, after that, invokes the gateway managers on global nodes and local
managers on private nodes.

The job manager, first, reads job files. A job file includes the class name
of a job, the node name where the job is to be invoked and some arguments
for the initialization. Then, the job manager invokes the jobs on the specified
local managers. Figure 4 shows a typical behavior of the framework when a job
requests a task.

4.7 Improvements from the Original Version

The current version of the GOGA Framework has been improved from the orig-
inal version [11] in the following points:

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 181

Fig. 4. Behavior of GOGA Framework

– Even if the framework manager terminates abnormally, all the processes and
files are surely deleted on remote nodes.

– When a task made by a job is not normally executed on a specified desti-
nation node due to some troubles with the communication path, the remote
node or the task, a task with a header including detailed information on
what kind of error has occurred and where the error has occurred, named an
error task, is surely returned to the source job.

– User interfaces for interactively accepting commands from a user are added
to the framework manager and the job manager.

– The gateway manager is modified so that remote gateway managers and
local managers are activated in parallel by using threads.

– The console manager program is added.
– Two methods for outputting messages to the standard output and the stan-

dard error of the user terminal are added to the Environment class.
– The local manager is improved so that a local manager can directly send a

task to another local manager in the same site.

5 The “Gridified” NSS-EA Using the GOGA Framework

We “Gridify” NSS-EA by using the GOGA Framework described in the previous
section. Figure 5 shows the architecture of the “Gridified” NSS-EA. The “Gridi-
fied” NSS-EA employs a master-worker model. From the viewpoint of scalability,
the process of the structure search is assigned to a master and the processes of
the parameter search to multiple workers. This is because the data size of struc-
ture passed from the structure search to the parameter search is small and the
time required for performing the parameter search is long. The “Gridified” NSS-
EA consists of four kinds of jobs that are the subclasses of the AbstractJob class,
three kinds of tasks that are the subclasses of the AbstractTask class and two
kinds of session data.

182 H. Imade et al.

Fig. 5. Architecture of the “Gridified” NSS-EA

The NSSEAGenerationAlternationJob is a job to handle the process of gen-
eration alternation for the structure search. There are multiple NSSEAGenera-
tionAlternationJobs running on the master node so that individuals enough to
keep all the workers operating are provided to the individual queue. From the
viewpoint of efficiency, while an NSSEAGenerationAlternationJob chooses the
pair of parents and makes multiple kids to add them to the individual queue,
the others are not allowed to operate in parallel. This is realized by using the
lock mechanism provided by the thread library of Java.

The NSSEAClientJob is a job to communicate with a worker job named the
NSSEAWorkerJob. There are multiple NSSEAClientJobs running on the master
node. An NSSEAClientJob invokes an NSSEAWorkerJob on a local manager
running on a remote worker node by sending an NSSEAInitWorkerTask. Then,
the NSSEAClientJob keeps requesting the NSSEAWorkerJob to evaluate individ-
uals by sending an NSSEASendIndividualsTask. If the NSSEAClientJobs cannot
communiate with the NSSEAWorkerJob during calculation, due to some trou-
bles, the NSSEAClientJobs terminates after notifying to NSSEAGenerationAl-
ternationJobs appropriately.

The NSSEAWorkerJob is a job to handle the process of the parameter search.
An NSSEAWorkerJob runs on a local manager on a worker node. It recieves a
structure matrix from an NSSEASendIndividualsTask, performs the parameter
search based on the structure matrix and returns the results by sending an
NSSEAReturnIndividualsTask to the corresponding NSSEAClientJob.

6 Experiments

By using PC clusters of the University of Tokushima and Kyushu University
on Open Bioinformatics Grid (OBIGrid) [13] in Japan, we confirmed that the
proposed “Gridified” NSS-EA satisfied all the requirements discussed in section
three well. In OBIGrid, sites are connected by using VPN over the Internet.
As shown in Fig. 6, in this experiment, we used one single-CPU PC and 58
dual-CPU PCs in the site of the University of Tokushima and one single-CPU

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 183

Fig. 6. Grid testbed on OBIGrid

PC and 44 dual-CPU PCs in the site of Kyushu University. The single-CPU
PCs are the gateway nodes of each site. We used a dual-CPU PC as a user
terminal node and another dual-CPU PC as a master node in the site of the
University of Tokushima and the rest of 100 dual-CPU PCs as worker nodes.
We executed the framework manager, the job manager and the console manager
on the user terminal node, the gateway managers on the gateway nodes of each
site and local mangers on the master node and the worker nodes. We invoked
an NSSEAMainJob, NSSEAGenerationAlternationJobs and NSSEAClient-Jobs
on the master node and NSSEAWorkerJobs on the worker nodes. We applied
the proposed “Gridified” NSS-EA to a five-gene genetic network estimation
problem.

In the followings, we detail the experiments done for confirming that the
proposed “Gridified” NSS-EA satisfies the requirements of robustness and scal-
ability.

[Robustness]: Recovery from Artificial Troubles on Worker Nodes. We
confirmed that the proposed “Gridified” NSS-EA detected troubles with worker
nodes and safely separated the troubles without stopping the calculation in the
following cases:
– Power shut down on a worker node in execution
– Pulling out a network cable from a worker node
– Killing NSSEAInitWorkerTask, NSSEASendIndividualsTask and NSSEARe-

turnIndividualsTask in execution

[Scalability]: Performance Improvement as the Number of Workers
Increases. We increased the number of worker nodes from one to 200. Figure 7
(left) shows the number of workers versus the time required for 20 generations.
Figure 7 (right) shows the number of workers versus the speed up rate, where
the speed of one worker is supposed to be one. The average time required for
a single evaluation to be accomplished on a worker is distributed between six
and eight seconds. The average size of NSSEASendIndividualsTask and that
of NSSEAReturnIndividualsTask are about 220 and 990 bytes, respectively. As
shown in Fig. 7, the proposed “Gridified” NSS-EA shows good scalability.

184 H. Imade et al.

Fig. 7. Time required for 20 generations (left) and speed-up rate (right)

7 Conclusion

In this paper, we proposed the “Gridifid” NSS-EA by using the Grid-Oriented
GA (GOGA) Framework. We confirmed that the proposed “Gridified” NSS-EA
works correctly and evaluated its performance on the Open Bioinformatics Grid
(OBIGrid) in Japan.

We are now developing a mechanism for automatically rebooting workers
when worker nodes are shut down due to some troubles with the nodes or net-
work. A resource management mechanism for automatically balancing compu-
tational resources among users is also under development.

Acknowledgements. This work was partially supported by the Grants-in-
Aid for Scientific Research on Priority Areas, “Genome Information Sciences”
(No.12208008) from the Ministry of Education, Culture, Sports, Science and
Technology in Japan. We thank all the participants of OBI Grid and Mr. Mor-
ishita and Mr. Seike of The University of Tokushima.

References

1. Ando, S., Iba, H.: Inference of Gene Regulatory Model by Genetic Algorithms.
Proc. Con-gress on Evolutionary Computation 2001, (2001) 712–719

2. Ando, S., Sakamoto, E., Iba, H.: Modeling Genetic Network by Hybrid GP, Proc.
Congress on Evolutionary Computation 2002 (CEC2002), (2002) 291–296

3. BioGrid. http://www.biogrid.jp
4. Foster, I., Kasseleman C.: Globus: A metacomputing infrastructure toolkit. Int’l

Journal of Supercomputing Applications. 11(2) (1997) 115–128
5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addi-son-Wesley Publishing Company Inc. (1989)
6. Gordon, V.S., Whitley, D.W.: Serial and Parallel Genetic Algorithms as Function

Optimiz-ers. Proc. of the Fifth Int’l Conf. on Genetic Algorithms (1993) 434–439
7. Gorges-Scheluter, M.: ASPARAGOS An Asynchronous Parallel Genetic Optimiza-

tion Strategy. Proc. of the Third Int’l Conf. on Genetic Algorithms, (1989) 422–427

“Gridifying” an Evolutionary Algorithm for Inference of Genetic Networks 185

8. Hamilton-Wright, A., Stacey, D.: Fault-Tolerant Network Computation of Individ-
uals in Genetic Algorithms. Congress on Evolutionary Computation 2002 (2002)
1721–1726

9. Hiroyasu, T., Miki, M., Hamasaki, M., Tanimura, Y.: A New Model of Distributed
Genetic Algorithm for Cluster Systems: Dual Individual DGA. Proc. of the Int’l
Conf. on Parallel and Distributed Processing Techniques and Applications, Vol.1
(2000) 477–483

10. Iba, H., Mimura, A.: Inference of Gene Regulatory Network by means of Interactive
Evolutionary Computing, Information Sciences, Vol. 145, No. 3-4, (2002) 225–236

11. Imade, H., Morishita, R., Ono, I., Ono, N., Okamoto, M.: A Grid-Oriented Genetic
Algo-rithm Framework for Bioinformatics. New Generation Computing, Vol.22
(2004) 177–186

12. Kimura, S., Hatakeyama, H., Konagaya, A.: Inference of S-system Models of Ge-
netic Networks using a Genetic Local Search, Proc. 2003 Congress on Evolutionary
Computation (CEC2003), (2003) 631–638

13. Konagaya, A., Konishi, F., Hatakeyama, M. And Satou, K.: The Superstructure
towards Open Bioinformatics Grid, New Generation Computing, 22 (2004) 167–176

14. Laszewski, G., Foster, I., Gawor, J., Smith, W., Tuecke, S.: CoG Kits: A Bridge be-
tween Commodity Distributed Computing and High-Performance Grids. In ACM
2000 Java Grande Conf. (2000) 97–106

15. Lee, C.H., Park, K.H., Kim, J.H.: Hybrid Parallel Evolutionary Algorithms for
constrained optimization utilizing PC Clustering. Congress on Evolutionary Com-
putation 2001 (2001) 1436–1441

16. Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., Eguchi, Y.: Development of
a System for the Inference of Large Scale Genetic Networks, Proc. Pacific Symp.
on Biocomputing, (2001), 446–458

17. Maki, Y., Ueda, T., Okamoto, M., Uematsu, N., Inamura, Y., Eguchi, Y.: Inference
of Genetic Network Using the Expression Profile Time Course Data of Mouse P19
Cells, Genome Informatics, Vol. 13, (2002), 382–383

18. Morishita, R., Imade, H., Ono, I., Ono, N., Okamoto, M.: Finding Multiple Solu-
tions Based on An Evolutionary Algorithm for Inference of Genetic Networks by
S-system. Proc. 2003 Congress on Evolutionary Computation (CEC2003) (2003)
615–622

19. North Carolina Bioinformatics Grid. http://www.ncbiogrid.org
20. Ono, I., Kobayashi, S.: A real-coded genetic algorithm for function optimization

using Unimodal Normal Distribution Crossover. Proc. of the Seventh Int’l Conf.
on Genetic Algo-rithms (1997) 246–253

21. Sakamoto, E., Iba, H.: Inferring a System of Differential Equations for a Gene
Regulatory Network by using Genetic Programming. Proc. 2001 Congress on Evo-
lutionary Computa-tion (CEC2001) (2001) 720–726

22. Sato, H., Yamamura, M., Kobayashi, S.: Minimal generation gap model for GAs
consider-ing both exploration and exploitation. Proc. of 4th Int. Conf. on Soft
Computing (1996) 494–497

23. Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design
in Mo-lecular Biology. Addison-Wesley, Massachusetts (1976)

24. Tanese, R.: Distributed Genetic Algorithms. Proc. of the Third Int’l Conf. on
Genetic Algo-rithms (1989) 434–439

25. Tominaga, D., Okamoto, M.: Design of canonical model describing complex nonlin-
ear dynamics, Computer Applications in Biotechnology 1998 (CAB7), Pergamon
Press, Oxford, (1998) 85.

186 H. Imade et al.

26. Tominaga, D., Koga, N., Okamoto, M.: Efficient Numerical Optimization Algo-
rithm Based on Genetic Algorithm for Inverse Problem. Proc. of the Genetic and
Evolutionary Compu-tation Conf. (2000) 251–258

27. Ueda, T., Koga, N., Ono, I., Okamoto, M.: Efficient Numerical Optimization Tech-
nique Based on Read-Coded Genetic Algorithm for Inverse Problem. Proc. 7th Int’l
Symp. On Artificial Life and Robotics (AROB’02) (2002) 290–293

28. Voit, E.O.: Computational Analysis of Biochemical Systems. A Practical Guide for
Bio-chemists and Molecular Biologists, Cambridge University Press, Cambridge
2000 (2000)

Author Index

Abdul Salam, Rosalina 92
Alex Grey, W. 140
Ang, Larry 53
Arzberger, Peter W. 53, 68

Bayer, Micha 125
Berry, David 125
Bhagwat, Shonil 140
Birnbaum, Adam 68
Bisby, Frank A. 140
Bourne, Philip E. 53, 68
Brewer, Peter 140
Bromley, Oliver 140
Byrnes, Robert W. 53

Caithness, Neil 140
Casanova, Henri 68
Chuon, Danny 53
Culham, Alastair 140

Date, Susumu 43
Defago, Xavier 8

Ferrier, Magnus 125
Fiddian, Nick J. 140
Fukuzaki, Akinobu 82

Hanada, Yoshiko 152
Hatakeyama, Mariko 82
Hayes, James 68
Hiroyasu, Tomoyuki 152
Houghton, Derek 125

Ide, Kaori 82
Imade, Hiroaki 171
Ito, Daiki 20

Jones, Andrew C. 140

Kitayama, Tomoya 20
Kian, Ng Lip 117
Konagaya, Akihiko 8, 32, 82
Konishi, Fumikazu 32, 82

Kosaka, Takahiro 43
Kuramitsu, Seiki 82

Li, Wilfred W. 53, 68

Mahadi, Nor Muhammad 117
Mat Isa, Mohd Noor 117
Matsuda, Hideo 43
Matsuoka, Satoshi 53, 103
Miki, Mitsunori 152
Miller, Mark A. 53, 68
Mizuguchi, Naoaki 171
Mohamed, Rahmah 117

Nagashima, Takeshi 82
Nakada, Hidemoto 103
Nakashima, Yasuhiko 8

Okamoto, Masahiro 171
Okamoto, Yuko 152
Ono, Isao 171
Ono, Norihiko 171

Pittas, Nick 140

Raih, Mohd Firdaus 117
Raja Moktar, Raja Murzaferi 117
Rosni, Abdullah 92

Satou, Kenji 8
Scoble, Malcolm 140
Shahab, Atif 53
Sharum, Mohd Yunus 117
Shimodaira, Hidetoshi 103
Shimojo, Shinji 43
Sinnott, Richard 125
Sugawara, Hideaki 1
Sugimoto, Masahiro 20
Sutton, Tim 140
Suzumua, Toyotaro 53

Takahashi, Kouichi 20
Tanaka, Kouji 53
Tohsato, Yukako 43

188 Author Index

Tomita, Masaru 20
Tsuji, Shin’ichi 8

White, Richard J. 140
Williams, Paul 140
Wooi Keat, Martin Chew 92

Xu, Xuebiao 140

Yamamoto, Yo 103
Yesson, Chris 140
Yokoyama, Shigeyuki 82

	Frontmatter
	Life Science Grid
	Gene Trek in Procaryote Space Powered by a GRID Environment
	An Integrated System for Distributed Bioinformatics Environment on Grids
	Distributed Cell Biology Simulations with E-Cell System
	The Architectural Design of High-Throughput BLAST Services on OBIGrid
	Heterogeneous Database Federation Using Grid Technology for Drug Discovery Process
	Grid Portal Interface for Interactive Use and Monitoring of High-Throughput Proteome Annotation
	Grid Workflow Software for a High-Throughput Proteome Annotation Pipeline
	Genome-Wide Functional Annotation Environment for {\itshape Thermus thermophilus} in OBIGrid
	Parallel Artificial Intelligence Hybrid Framework for Protein Classification
	Parallelization of Phylogenetic Tree Inference Using Grid Technologies
	EMASGRID: An NBBnet Grid Initiative for a Bioinformatics and Computational Biology ServicesInfrastructure in Malaysia
	Development of a Grid Infrastructure for Functional Genomics
	Building a Biodiversity GRID
	Mega Process Genetic Algorithm Using Grid MP
	``Gridifying'' an Evolutionary Algorithm for Inference of Genetic Networks Using the Improved GOGA Framework and Its Performance Evaluation on OBI Grid

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

